Horizon 2020 Framework Programme

Grant Agreement: 732328 — FashionBrain

Document Information

Deliverable number: D4.2
Deliverable title: Demo on text joins

Deliverable description: This deliverable present the demo we build for the text join
techniques reported in D4.1

Due date of deliverable: Jun. 30, 2018
Actual date of deliverable: Jun. 30, 2018
Authors: Alexander Loser, Torsten Kilias,

Ying Zhang, Martin Kersten, Richard Koopmanschap

Project partners: Beuth, UNIFR, USFD, MDBS, Zalando

Workpackage: WP4

Workpackage leader: Beuth

Dissemination Level: Public

Change Log

Version Date Status Author (Partner) Description/Approval Level
0.1 May 22, init Ying Zhang (MDBS) | Initial version of the deliverable

2018

0.8

June 20,
2018

first draft

Torsten Kilias
(Beuth), Ying Zhang
(MDBS)

First draft of the document

Table of Contents

1 Introduction
2 Summary of IDEL
2.1 IDEL Architecture
2.2 IDEL Implementation
3 IDEL Demonstration
3.1 Demo data set(s)

3.2 Demo scenarios

References

11

1 Introduction

The FashionBrain project targets at consolidating and extending existing European technologies in the
area of database management, data mining, machine learning, image processing, information retrieval,
and crowdsourcing to strengthen the positions of European (fashion) retailers among their world-wide
competitors.

Retailers, such as Zalando SE, often use a relational database management system (RDBMS) to
manage their product catalogue, customer data, sales information, etc. At the same time, there is also
an abundance of text information available online, e.g. news messages, fashion articles, customers
reviews and public fashion discussions. So, to enrich relational data in a (fashion) data warehouse
with text data from the web is therefore an important operation for retailers to learn about their users,
monitoring trends and predicting new brands. Therefore, in WP4 “In-Database-Mining and Deep
Learning”, we focus on developing deep learning empowered in-database text mining technology.

In the context of T74.1 “Text joins between Fashion Entities in a RDBMS and Text”, we have
developed IDEL (In-Database Entity Linking), a novel architecture in which relational data, text data
and entity linking are integrated into a single system. First, IDEL leverages two best of breed systems
MonetDB' and INDREX [1] for relational and text data analysis, respectively. Then, we have
developed novel entity linking technology using neural embeddings for IDEL. Finally, all components
are integrated into MonetDB to realise an advanced in-database text-join system, in which deep
learning techniques are used to achieve better entity linking results.

The results of our work in T4.1 are reported in two deliverables. In D4.1 “Report on text joins” [2],
we have reported the design and implementation of IDEL. In this deliverable D4.2 “Demo on text
joins”, we first give a brief summary of the architecture of IDEL (Section 2), then we present the
demo we have built based on IDEL to showcase its usefulness for fashion data (Section 3).

! https://www.monetdb.org

2 Summary of IDEL

In this section, we briefly describe the architecture of IDEL and its implementation. More detailed
information can be found in [2].

2.1 IDEL Architecture

3. Linking 4. (Re-)training Update the strategy with
trained neural network

Tuple r Textt Ranking 'l

Similarity via neural network

Tupler | Textt Similarity Tuple_Vector v(r) Text_Vector v.(t) | Match(r,t)
\ /
Match(r,t,v.(r),v.(t),strate ~—
4 Mg > (rtVe(r).v.(t) ay)
g \

Tupler Tuple_Vector VR(I‘) Text_Vector vT(t) Textt
Fareign Key Pretrained /

Tuples 4 Models " e

Relational data Text data

1. Viectorization

Figure 2.1: Architecture of IDEL. The workflow of the process contains four steps: vectorization,
matching, linking and (re-)training

Figure 2.1 depicts the architecture of IDEL. It is designed in such a way that all involved data (i.e.
relational data, text data and neural embeddings) is stored in an RDBMS. Relational data is stored
according to its schema. Text data is simply stored as a collection of strings (e.g. a table with a single
string column). In this way, users can manage and query relational data together with text data and
neural embeddings. Our approach for entity linking addresses both mapping directions, i.e. text to
relational data and vice versa. The process of entity linking is divided into four major steps:

Step 1: Vectorization

First, we compute the respective vector representations (i.e. Tuple Vector wv,(r) and
Text Vector v,(t)) for the two data sets. To create these vectors, we choose SkipThought [5], an
existing pre-trained neural network model from the machine learning community that is known to be
particularly suitable for this kind of work. Further, we can enrich both vector representations with
additional discriminative features we can derive from their respective data sets. For tuple vectors, we
can use additional constraints in the relational data, such as foreign keys. For text vectors, we can use
context from neighboring sentences.

Step 2: Finding matching candidates

The next step is to find matching candidates for entities in relational data with mentions in text data.
Assume a user enters an SQL query such as the following to link relational data (Building) and
entities mentioned in text data (EntityMention.Mention):

SELECT e.*, o.%*
FROM EntityMention e, Building b
WHERE LINK CONTAINS (e.Mention, b.name, $Strategy) = TRUE

This query joins EntityMention with tuples of Building and evaluates if the name of a Building
is contained in the entity mentions. In addition to entity mentions and building names, the function
LINK CONTAINS takes a third parameter $Strategy so that different strategies can be passed.
Currently, we support both an exact match and a semantic match strategy.

When computing the matches for the first time, there is often little knowledge about the data
distribution. Therefore, we bootstrap an initial candidates pool by generating exact matches with a
join between words in entity mentions and words in relational tuples describing those entities. The
initial matches can be used in later steps, such as linking and retraining. We choose this strategy over
using gold standards, because the later requires expensive domain experts for the labeling and
hundreds or (preferably) even thousands of matchings.

Step 3: Linking

This step creates linkings of matching entities. We interpret entity linking as a ranking task and
assume that an entity mention in the text data is given and we try to find the k& most likely entities in
the relational data (or vice versa). This step uses the matching candidates found in Step 2 and
generates a ranking. If the matching function used in Step 2 returns similarity values, this steps will
leverage those values to compute a ranking and select the top N best matchings for further use;
otherwise (e.g. LINK CONTAINS), all pairs of matching candidates are regarded to have equal
similarity and hence, will be included in the result of the linking.

Step 4: Retraining

An initial matching strategy like the aforementioned bootstrapping is often unable to detect difficult
natural language features such as homonyms, hyponyms, synonyms and misspellings. For example, a
synonym is a word or phrase that means exactly or nearly the same as another word or phrase. For this
reason, it is impossible for an equality match to find the synonyms if they are not contained in table.
To improve results of the initial matching step, IDEL conducts a retraining step to enhance the neural
models of the semantic similarity function. Thereby, the system updates previous models with
retrained neural networks and recomputes the matching step. This training - updating - matching circle
can be also used to capture changes (i.e. inserts, deletes, updates) in the database. If those changes
alter the distributions of the data, the systems triggers the neural network to be retrained with the new
data so as to match the new entities reliably while using existing matching models for bootstrapping
training data and reducing manual labeling efforts.

2.2 IDEL Implementation

p
MonetDB SQL engine
e —- i D =
relational =il rL s relational
embeddings ‘—I (1) Create embeddings data

‘J # Tensor —
text text
embeddings data
‘{2.1] Compute similarities |
-

AN

Y
‘ (2.2) Compute rankings | | candidates
)

(2.3) Select topM |

(2) Search for candidates ‘

Figure 2.2: implementation architecture of IDEL.

Figure 2.2 depicts the implementation architecture of IDEL. Following our design criterion, the whole
entity linking process has been implemented in a single RDBMS. For this, we used MonetDB,
because it is an open-source columnar RDBMS optimised for in-memory processing of analytical
workloads [6]. As shown in the figure, all data is stored in MonetDB, and all computation are
implemented either as SQL queries or by SOL Python UDFs.

In recent years, MonetDB has enriched its support for in-database analytics by, among others,
introducing MonetDB/Python integration through SQL UDFs [7]. As a result, MonetDB users can
specify Python as the implementation language for their SQL UDFs. In principle, any Python library
accessible by the MonetDB server can be imported. When an SQL Python UDF is called in an SQL
query, MonetDB automatically starts a Python subprocess to execute the UDF. MonetDB exchanges
data of relational tables between the SQL engine and the embedded Python process by means of
NumPy arrays, because they both have the same binary structure. In this way, data transfer and
conversion between these two environments are negligible.

In the implementation, we first store relational data in MonetDB according to their schemas and text
data in a table with a single string-typed column. Then, we create embedding vectors for both
relational and text data using two SQL Python UDFs, one for each input table. This step leverages the
deep learning features of TensorFlow” to load the pre-trained neural networks and apply them on the
input tables. We return embedding vectors as NumPy arrays and store them as BLOBs. Finally, we
find matching candidates with the highest similarities among embeddings. We employ nearest
neighbor search with Spotify Annoy’ for a given embedding, compute a ranked list for each entity
according to their similarities and finally return top N candidates. All steps are implemented in SQL.

A main advantage of this implementation is that changes inside this architecture, such as different
embedding models or similarity functions, are transparent to upper layer applications.

2 https://github.com/tensorflow
? https://github.com/spotify/annoy

3 IDEL Demonstration

Text joins can be used either for finding interesting tuples for entity mentions in text or finding
interesting mentions in text for a given tuple. We show in our demo these two use cases. The linking
from text to tuple is shown by an extension of the web-based editor Tasty (Tag as-you-Type) [3].
Tasty recognizes and links entities while the user is typing. With our extension Tasty now shows
relevant information from the database to detected entities. This relevant information supports the
writer with the creation of the text. If the writer needs further information about an entity, the demo is
able to search for existing relevant text which contains a mention of this entity. Further, the demo
enables the user to search a text collections for specific entity.

We integrate IDEL into the backend of Tasty and replace the existing Entity Linking system, so that
Tasty now can link against a relational database. Further, we trained the Named Entity Recognizer
Texoo [4] on Fashion related Named Entities. So, we can use Texoo and IDEL in combination.

3.1 Demo data set(s)

For our demo we need a structured data with fashion related entities, such as clothing, designer,
models. Further we need a text collection which contains mentions of these fashion related entities.
For the purpose of the demo we use wikipedia as the source for the entity mentions and wikidata as
the source of the structured data. We use anchor links (i.e. links from one Wikipedia page to another
Wikipedia page) for the generation of the entity mentions. Further, we transform the information from
the less structured Wikidata into relational tables. Table 1 shows some statistics about these tables and
their corresponding mentions. Later these tables can be replaced by data from a real-world Fashion
Data Warehouse (FDWH).

Entity Type Tuples Mentions Columns
Clothing 1685 56061 8
Designer 1899 18180 6
Model 11215 273130 5

Table 1: Statistics about the dataset derived from Wikipedia and Wikidata.

3.2 Demo scenarios

Our demo shows two main use cases. In the first scenario, we show related entities during text
writing. The second scenarios shows related documents for an entity. Further, both scenarios
complement each other. For example, if a user writes text and needs additional information about the
topic or named entities, she/he can use the tuples from the relational database. However, sometimes
the database does not contain the most fresh information. In this case, the user can find more fresh
information in related documents.

Scenario I (Tag as-you-Type - Show related Entities to your Text)

In the first scenario we show the interactive editor Tasty with IDEL as backend. While the user writes
text, the system annotates named entities in the text and links them to an relational database, such as
an FDWH. It then shows additional information for the linked entities to the user which can help
him/her to proceed writing.

Figure 3.1 shows a screenshot of the Tasty editor interface. At the left side, the input area with the
currently written text is located. In the text fashion related named entities are marked. The user can

add new annotations or correct the link of an existing annotation. If the user clicks on a marked entity
mention, the editor shows a selection of alternative entities for the currently linked entity. Further, the
user can remove an incorrect annotation. The system can use such corrections to improve the learned
model for future training iterations.

On the right-hand side, Tasty shows an short overview of tuples which correspond to the named
entities mentioned in the text. This gives the user additional information from the FDWH which can
be useful for the further writing process. If the user is interested in more details, he/she can click on
“Show full entry” to see the remaining columns of the Tuple (see Figure 3.2). In our demo, the full
entry of a tuple can contain text, a number, a boolean or an image. Especially, images are important in
the fashion domain, because they give visual impression of the article.

name

Coco Chanel

Tasty feat. IDEL Ax anvs o

The Palazzo pant made its first appearance in the 1930's. Coco Chanel had spotted these elegant men's trousers on a
trip to Venice and identified them as a design that she could re-invent for women. Initially she tried them out herseif as a
clever solution to getting in and out of gondolas. Made from fluid fabrics and cut for a long legged, high-waisted

silhouette, she realized this was a genuinely comfortable design that would beautifully flatter the female form. It would be

a bold, modern alternative to a skirt or dress that allowed for much more ease and movement. The Palazzo Pant was

created and Chanel launched her new look on the beach and round the town in the high-fashion French resort of
_ with a Breton top, it was a hit and a fashion icon was born. Show fll entry

Chanel Palazzo Pants
0.4
Fashion Company Lo
8 Clothing
Coco Chanel
0.46
Fashion Designe Name

& renoe | Palazzo Trousers

Trousers

Short Descriptio

Women's trousers with very full legs

Figure 3.1: Screenshot of the Tasty editor interface

Palazzo Pants
BB Clothing
Name Materia mage Long Descriptior
Palazzo Trousers Silk crepe/crape, jersey Palazzo pants are long women's
trousers cut with a loose,
5 Short Descrip! extremely wide leg that flares out
from the waist. Palazzo trousers
Palazzo Pants Women's trousers with very full are popular as a summer season
legs style, as they are loose and tend to
Categor be flattering in light, flowing
. fabrics that are breathable in hot
Trousers weather.

Figure 3.2: Screenshot of “Show full entry”

Scenario II (Searching for related Documents for an Entity)

Our second scenario is searching for related documents to an entity. In this scenario the user selects an
entity and the system returns the related documents which contain a mention of this entity. This
selection can be done either from a linked entity in the editor or by searching for the entity in the
search bar. Figure 3.3 shows a screenshot of the second scenario. At the top the search bar is located,
on the left the tuple for the selected entity and in the center the related documents. The related
documents can give further and probably more fresh information about the selected entity then the
tuple from the database.

Coco Chanel -
asty teat. IDEL

&8 Fashion Designer

Name N
Coco Chanel
Coco Chanel
Gabrielle Bonheur "Coco” Chanel (19 August 1883 - 10 January 1971) was a French fashion designer and a business woman. She
Image was the founder and namesake of the Chanel brand. Chanel was credited in the post-World War | era with liberating women from

the constraints of the "corseted silhouette” and popularizing a sporty, casual chic as the feminine standard of style. A prolific
fashion creator, Chanel extended her influence beyond couture clothing, realising her design aesthetic in jewellery, handbags, and
fragrance. Her signature scent, Chanel No. 5, has become an iconic product. She is the only fashion designer listed on TIME
magazine's list of the 100 most influential people of the 20th century. Chanel designed her famed interlocked-CC monogram,
meaning Coco Chanel, using it since the 1920s. Chanel's social connections appeared to encourage a highly conservative personal
autlook. Rumors arose about Chanel’s activities in the course of the German occupation of France during World War II, and she
was criticised for being too comfortable with the Germans. One of Chanel's liaisons was with a German diplomat, Baron (Freiherr)
Hans Giinther von Dincklage (de). After the war ended, Chanel was interrogated about her relationship with von Dincklage, but she
Show full entry was not charged as a collaborater. After several years in Switzerland after the war, she returned to Paris and revived her fashion
house. In 2011, Hal Vaughan published a book on Chanel based on newly declassified documents of that era, revealing that she
had collaborated with Germans in intelligence activities. One plan in late 1943 was for her to carry an SS separate peace overture
to British Prime Minister Winston Churchill to end the war.

Chanel

Chanel No. 5 is the first perfume launched by French couturier Gabrielle "Coco’ Chanel. The chemical formula for the fragrance
was compounded by French-Russian chemist and perfumer Ernest Beaux

Coco Chanel

Chanel S.A. (/[a'nel/; French: [Ja'nel]) is a French, privately held company owned by Alain Wertheimer and Gérard Wertheimer,
grandsons of Pierre Wertheimer, who was an early business partner of the couturiére Gabrielle Bonheur Chanel. Chanel S.A. is a
high fashion house that specializes in haute couture and ready-to-wear clothes, luxury goods, and fashion accessories. In her
youth, Gabrielle Chanel gained the nickname Coco from her time as a chanteuse. As a fashion designer, Coco Chanel catered to
women's taste for elegance in dress, with blouses and suits, trousers and dresses, and jewellry (gemstone and bijouterie) of
simple design, that replaced the opulent, over-designed, and constrictive clothes and accessories of 19th-century fashion. The
Chanel product brands have been personified by fashion models and actresses, including Inés de La Fressange, Catherine
Deneuve, Carole Bouquet, Vanessa Paradis, Nicole Kidman, Anna Mouglalis, Audrey Tautou, Keira Knightley and Marilyn Monroe.

Coco Chanel
As far back as the 1890s, French actress Polaire pioneered a look which included short, disheveled hair, emphatic mouth and huge
eyes heavily outlined in kohl. The evolving flapper look required “heavy makeup" in comparison to what had previously been

Figure 3.3: Screenshot of searching related documents for an entity

References

[1] Kilias, Torsten, Alexander Loser, and Periklis Andritsos. 2015. “INDREX: In-Database Relation
Extraction.” Information Systems 53 (October): 124—44.

[2] Torsten Kilias, Alexander Ldoser, Felix A. Gers, Richard Koopmanschap, Ying Zhang, Martin
Kersten. 2018. “IDEL: In-Database Entity Linking with Neural Embeddings”. FashionBrain project
deliverable D4.1. Available online from: https://fashionbrain-project.eu/publicdeliverables/

[3] Sebastian Arnold, Robert Dziuba, Alexander Loser. “TASTY: Interactive Entity Linking
As-You-Type.” COLING (Demos) 2016: 111-115

[4] Sebastian Arnold, Felix A. Gers, Torsten Kilias, Alexander Loser: “Robust Named Entity
Recognition in Idiosyncratic Domains”. CoRR abs/1608.06757 (2016)

[5] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba, and S. Fidler. 2015.
“Skip-thought vectors”. In Advances in Neural Information Processing Systems, pages 3276-3284.

[6] P. A. Boncz, M. L. Kersten, and S. Manegold. “Breaking the memory wall in MonetDB”.
Commun. ACM, 51(12):77-85, 2008.

[7] M. Raasveldt and H. Miihleisen. 2016. “Vectorized UDFs in Column-Stores”. SSDBM’16. ACM.

10

