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Abstract

This report presents a new architecture, In-Database Entity Linking (IDEL), in
which we integrate the analytics-optimized Database MonetDB with neural text
mining abilities. This follows requirements from D.1.2 suggesting to have both, text
and tabular data in the same database to permit market research departments to
conduct analytic queries for fashion trends.

The most important task is how to recognize entities in a text and to link them to
an existing database. Our system design abstracts core tasks of most neural entity
linking systems specifically for MonetDB. We leverage the ability of MonetDB to
support in-database analytics with user defined functions implemented in Python
and these functions call machine learning libraries for neural text mining, such as
TensorFlow. This type of integration removes data shipping and transformation
overhead by utilizing MonetDB’s ability to embed Python processes directly in the
database kernel and exchange data with them. IDEL represents text and relational
data in a joint vector space with neural embeddings and can compensate errors
with ambiguous entity representations. For detecting matching entities, we propose
a new similarity function based on joint neural embeddings which are learned via a
specific ranking loss.

So far, no corpus exists that has human labeled entities in fashion texts linked to
large tables with many densely populated attributes. Therefore we carefully explored
potentially corpora that would mimic properties that would come close to a scenario
in the fashion domain. Our choice is WebNLG which features many different entity
types also used in the fashion domain, such as products, persons, groups, locations
and organizations. Moreover, this corpus has sparse and dense populated tables
as we would expect in the fashion domain as well. Our first implementation and
experiments using the WebNLG corpus show the effectiveness and the potentials of
this architecture.

Our system architecture uses in D4.1 our named entity recognition software TASTY.
A more recent adoption, guided by recommendations of the EU, also lead to integrate
FLAIR (published after this report by Zalando) in MonetDB, the named entity
tagger of zResearch.
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1 Introduction

The FashionBrain project targets at consolidating and extending existing European
technologies in the area of database management, data mining, machine learning,
image processing, information retrieval, and crowdsourcing to strengthen the posi-
tions of European (fashion) retailers among their world-wide competitors.
Retailers, such as Zalando SE, often use a Relational Database Management Sys-
tem (RDBMS) to manage their product catalogue, customer data, sales informa-
tion, etc. At the same time, there is also an abundance of text information available
online, e.g. news messages, fashion articles, customers reviews and public fash-
ion discussions. So, to enrich relational data in a (fashion) data warehouse with
text data from the web is therefore an important operation for retailers to learn
about their users, monitoring trends and predicting new brands. Therefore, in WP4
“In-Database-Mining and Deep Learning”, we focus on developing deep learning
empowered in-database text mining technology. To that end we develop a novel
architecture, which tightly integrates with RDBMSs doing entity linking directly
inside of the database.

We first outline the general architecture in section 2.1, and then discuss the rela-
tional neural embeddings and how they form a joint vector space in 2.2, and further
implementation details in Section 2.3. We close with the results of our experiments
in Section 2.4 and related works in Section 3

1.1 Scope of this Deliverable

In the context of T4.1 “Text joins between Fashion Entities in a RDBMS and Text”,
we have developed In-Database Entity Linking (IDEL), a novel architecture in which
relational data, text data and entity linking are integrated into a single system. IDEL
specifically targets the following business scenarios defined by deliverable D1.2

• Scenario 1, in particular challenge 1 “Mapping Search Intentions to Product
Attributes”, where linking of product attributes first requires a linking of the
products themselves.

• Scenario 3, challenge 4 “FashionBrain Taxonomy and Product Taxonomy
Linking” and challenge 5 “Linking Entities to Product Catalogue” which
directly refer to the Entity Linking problem that is solved by this Deliverable
4.1 and Deliverable 4.2

IDEL leverages two best of breed systems MonetDB and In-Database Relation Ex-
traction (INDREX) [1] for relational and text data analysis, respectively. Then, we
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1. Introduction 1.1. Scope of this Deliverable

have developed a novel entity linking technology using neural embeddings for IDEL.

Scope and Dependencies This architecture builds on top of and integrates sub-
stantially with MonetDB, and as such with the results of Work Package WP2 and
specifically task T2.3 and Deliverable D2.4. MonetDB represents the lower execution
layer of the software packages implemented in this project and as a Core technology
is referred to as CT2 “Infrastructures for scalable cross-domain data integration and
management” In particular we make use of their Application Programming Inter-
face (API) for custom user defined functions and the deep integration with python
processes, NumPy and machine learning libraries such as TensorFlow that they pro-
vide. This results in an advanced in-database text-join system, which uses deep
learning techniques to improve entity linking results.

The results of our work in T4.1 are reported in two deliverables. This deliverable,
D4.1 “Report on Text Joins”, contains the theoretical description of the method
which is implemented and demonstrated in deliverable D4.2 and also experiments
showing this architectures’ effectiveness.

Dataset The deliverable and its task of entity linking requires a very specific type
of dataset. Such a dataset would need to map a knowledge base, for example in the
form of Resource Description Framework (RDF)-triples to corresponding entities in
text. For the fashion domain this could for example be a knowledge base which
describes different fashion products or brands and links those entries with news ar-
ticles, blog posts etc. Unfortunately, to the best of our knowledge, no such dataset
is currently available.
Regrettably the FashionBrain project does not compile a fashion themed entity
linking dataset itself, as deliverable D3.3 is only defined to provide data for Work
Packages WP5 and WP6 and not WP4, due to timeline issues. Therefore this de-
liverable and deliverable D4.2 by extension focus on implementing and validating a
system that can be compared to the state-of-the-art, and is applicable to standard
benchmark datasets that match the fashion domain as close as possible. We further
plan to compile and build a new dataset in cooperation with USFD, which can then
be used in the remainder of work package WP4 to test the reported techniques.
For this reason we have to rely on standard benchmark datasets for the entity link-
ing task. We specifically chose the WebNLG dataset [20] for its idiosyncratic and
structural similarities to fashion data, which makes transfer of our architecture to
actual fashion data from news articles or blogs straightforward, as demonstrated
in deliverable D4.2. WebNLG is a dataset containing 21,855 data and text pairs,
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1. Introduction 1.2. In Database Entity Linker (IDEL)

with the data consisting of 8,372 distinct knowledge base entries. these entries come
from the broad, community-sourced DBPedia knowledge base. WebNLG offers data
for 9 categories of entities. Out of these, the most relevant are Sports Team and
University, which map well to any kind of Brand, Food and written works, which are
products in essence, and building, which could map to individual stores or venues
related to fashion events. Most importantly, WebNLG is quite a diverse dataset,
which helps our architecture to generalize across different problems and corpora.
We decide to use the 2017 challenge version, since that is the most commonly used
benchmark.

The following example from WebNLG shows a candidate text for entities of the type
‘building’. It shows for the entity five attributes in structured and text data. Note
that some attributes are described over multiple sentences. Attribute names are
highly ambiguous and do not match words in texts. Furthermore, the position of
attributes in text varies.

<entry size="5" eid="Id1" category="Building">

<modifiedtripleset> <mtriple>103 Colmore Row | floorCount | 23</mtriple>

<mtriple>103 Colmore Row | completionDate | 1976</mtriple>

<mtriple>103 Colmore Row | architect | John Madin</mtriple>

<mtriple>103 Colmore Row | location |

"Colmore Row, Birmingham, England" </mtriple>

<mtriple>John Madin | birthPlace | Birmingham</mtriple>

</modifiedtripleset>

<lex lid="Id1" comment="good">

103 Colmore Row is located on Colmore Row, Birmingham,

England. It was designed by the architect, John Madin,

who was born in Birmingham. It has 23 floors and was

completed in 1976.</lex>

</entry>

1.2 In Database Entity Linker (IDEL)

A particular exciting source for complementing relational data is text data. There
are many opportunities for enterprises in many domains to gain advantages for their
offerings or operations, for example gaining insights into upcoming trends, when the
enterprise relational data can be linked to the abundance of text data from the web.
The entities represented in the relational data can then be complemented, updated
and extended with the information in the text data (which is often more fresh).

Entity linking between text and tables To realize such applications, a basic step
is linking entities mentioned in text to entities represented in relational data, so
that missing data in relational tables can be filled in or new data can be added.
Figure 1.1 shows text data (i.e. Document) already preprocessed by some entity
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Figure 1.1: An example of joining relational data (i.e. Organization) with text
data (i.e. EntityMention). An exact match strategy would have low recall, since it

would not be able to match ‘Big Blue’ with ‘IBM’ or ‘HP Inc.’ with ‘HP’.

recognizers [2], which annotate the text data with entities recognized (i.e. Mention)
and their positions in the text (i.e. Span). An often practiced but limited solution
to entity linking are linguistic-features based text join techniques [8, 14]. First, each
entity in the relational data is represented as a character sequence; while a text
join system is used to extract candidate entity mentions from the text data. Next,
the text join system executes a cross join between the two sets of entities. Finally,
users can apply some lexical filter conditions, e.g. an exact or a containment match,
to reduce the result size. This practice often suffers from low recall and precision
when faced with ambiguous entity type families and entity mentions. Typical error
sources are matches between homonyms (e.g. IBM as the IATA airport code or the
IT company), hyponyms (e.g. “SAP SE” vs. “SAP Deutschland SE & Co. KG”),
synonyms (e.g. IBM and “Big Blue”) and misspellings in text (e.g. “SAP Dtld. SE
& Co. KG”).

The need for Neural Entity Linking in RDBMS Entity Linking (EL) between
text and a more structured representation has been an active research topic for many
years in the web community and among computational linguists [22]. Systems come
stand-alone or as separate tools, while so far, there has been little support inside
RDBMSs for such advanced Natural Language Processing (NLP) tasks. Users (e.g.
data scientists) often have to use three systems : one for relational data (RDBMS),
one for text data (often Apache Lucene) and one for EL tasks (often homegrown).
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The first problem comes with the choice of a proper EL-system. Although there
are many research papers and a few prototypes for several domains available, most
work comes with domain specific features, ontologies or dictionaries, and is often
not directly applicable for linking data from a particular database or needs extensive
fine tuning for a particular domain. To apply EL on relational data, a user has to
first move the data from the RDBMS to the EL tool. This approach not only
has many technical drawbacks, e.g. huge development effort, high maintenance,
data provenance problems, bad scalability due to data conversion, transferring and
storage costs, but also non-technical drawbacks, such as the difficulty of hiring people
highly trained in both the RDBMS and the NLP worlds.

IDELs Innovations Ideally, an EL system should work without requiring domain
specific feature engineering and costly data shipping, and can be triggered by
simple Structured Query Language (SQL) queries. Therefore, we propose IDEL,
a single system in which relational data, text data and entity linking tools are
integrated. IDEL stores both relational and text data in MonetDB, the open-
source RDBMS developed by partner MonetDB solutions, which is optimized for
in-memory analytics [5]. Entity linking components are tightly integrated into the
kernel of MonetDB through SQL User-Defined Functions (UDFs) implemented in
Python [21]. In this way, machine learning libraries, e.g. TensorFlow, can be used
to facilitate entity linking with neural embeddings. We chose neural embeddings so
that the system learns ‘features’ from existing signals in relational and text data
as hidden layers in a neural network and thus reduces human costs for feature
engineering.

In IDEL, we choose the RDBMS as the basis of the architecture, and integrating
text data and entity linking into it for several carefully considered reasons. First,
while IDEL is generally applicable for text analysis applications, its primary
target is enterprise applications, in which enterprise data is already stored in an
RDBMS. Thus, an RDBMS based architecture has the biggest potential of a
seamless adaptation. Second, an RDBMS has an extensive and powerful engine
for pre- and post-entity-linking query processing and data analysis. Finally, in-
database analytics (i.e. bring the computation as close as possible to the data
instead of moving the data to the computation) has long been recognized as the
way-to-go for big data analytics. Following the same philosophy, we propose an
in-database entity linking architecture, which directly benefits from existing in-
database analytics features. As a result, the following characteristics are realized in
the IDEL architecture:

• Best of two worlds Users can seamlessly switch between SQL and Python,
so that they can choose the best execution environment for each part of their
data analytics.

• Flexible and extensible IDEL provides a set of pre-trained neural network
models. In addition, it permits users to plug-in their own models or third-party
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models for entity linking.

• Simple user interface IDEL provides an SQL-based user interface to all
parts of the system. The whole workflow of entity linking can be executed by
several calls to the implemented SQL UDFs. All intermediate and final results
can be stored in the underlying database for further analysis.

• Robust to language errors IDEL adopts state-of-the-art neural embeddings
for entity linking, which can achieve much higher precision under the four
typical error sources (i.e. homonyms, hyponyms, synonyms and misspellings).
In addition, the system leverages extra information from the relational data,
such as attribute values, and integrity constraints on data type and range.

• No manual feature engineering IDEL does not require manual feature
engineering; instead the system observes data distributions in the text
database to represent best entities in relational and text data.

D4.1 – Report on Text Joins 6



2 Method

2.1 IDEL Architecture

Figure 2.1 depicts the architecture of IDEL. We assume that relational data is
already stored in the RDBMS according to its schema. In IDEL, we also store
text data and neural embeddings in the same RDBMS. Text data is simply stored
as a collection of strings, e.g. a table with a single string column. In this way,
users can manage and query relational data together with text data and neural
embeddings. Our approach for entity linking addresses both mapping directions, i.e.
text to relational data and vice versa. The process of entity linking can be divided
into four major steps:

Step 1: Vectorization. First, we compute the respective vector representations
(i.e. Tuple Vector vR(r) and Text Vector vT (t)) for the two data sets. Here we choose not
to learn a neural network ourselves, but adopt a pre-trained model instead. From
the machine learning community, there already exist well-trained networks that
are known to be particularly suitable for this kind of work, e.g SkipThought [16].
Further, we can enrich both vector representations with additional discriminative
features we can derive from their respective data sets. For tuple vectors, we can
use additional constraints in the relational data, such as foreign keys. For text
vectors, we can use context from surrounding sentences. This is further discussed
in Sections 2.2.1 and 2.2.2.

Step 2: Finding matching candidates. The next step is to find matching
candidates for entities in relational data with mentions in text data. Assume a
user enters an SQL query such as the following to link relational and text data
shown in Figure 1.1:

SELECT e.*, o.* FROM EntityMention e, Building b

WHERE LINK CONTAINS(e.Mention, b.name, $ Strategy) = TRUE

This query joins EntityMention and tuples of building and evaluates if a name
of a building is contained in the entity mentions. In addition, the function
LINK CONTAINS takes a third parameter $Strategy so that different strategies can
be passed. So far, we support an exact match and, most important for this work, a
semantic match strategy.

When computing the matches for the first time, there is generally very little
knowledge about the data distribution. Therefore, we suggest bootstrapping an
initial candidate pool. For example, one can generate exact matches with a join
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2. Method 2.1. IDEL Architecture

Figure 2.1: Architecture of IDEL with 4 steps in its workflow: vectorization,
matching, linking and (re-)training.

between words in entity mentions and words in relational tuples describing those
entities. This strategy is inspired by Snowball [1]. The initial matches can be used
in later steps, such as linking and retraining. Other sources for matchings are gold
standards with manually labeled data. However, this approach is highly costly and
time consuming, because it requires expensive domain experts for the labeling and
hundreds, or preferably even thousands of matchings.

Step 3: Linking. Now, we create linkings of matching entities. We interpret entity
linking as a ranking task and assume that an entity mention in one data set is given
and we try to find the k most likely entities in the other data set. This step uses
the matching candidates found in step 2 and generates a ranking. If the matching
function in step 2 returns similarity values, this steps will leverage that information
to compute a ranking and select the top N best matchings for further use. In case
the matching function, e.g. LINK CONTAINS, does not produce similarity values
(possibly due to the chosen strategy), all pairs of matching candidates are regarded
to have equal similarity and hence will be included in the result of the linking.

D4.1 – Report on Text Joins 8



2. Method 2.2. Embedding Models

Step 4: Retraining. The initial matching strategies mentioned in step 1 are
often unable to detect difficult natural language features such as homonyms,
hyponyms, synonyms and misspellings. To improve the initial results, IDEL
contains a retraining step to enhance the neural models of the semantic similarity
function. Thereby, IDEL updates previous models with retrained neural networks
and recomputes the matching step. The training - updating - matching circle can
also be used to incorporate changes in both relational and text data. If the changes
alter the distributions of the data, the neural networks should be retrained with
the new data so as to match the new entities reliably while using existing matching
models for bootstrapping training data and reducing manual labeling efforts. In the
next section, we will describe in details how training is done.

2.2 Embedding Models

Entity linking and deep learning Since very recently, entity linking techniques
based on deep learning methods have started to gain more interests. The first reason
is significantly improved performance on most standard data sets reported by TAC-
KBP [12, 13]. Secondly, deep learning does not require costly feature engineering
for each novel domain by human engineers. Rather, a system learns from domain
specific raw data with high variance. Thirdly, deep learning based entity linking with
character- and word-based embeddings often can further save language dependent
costs for feature engineering. Finally, deep learning permits entity linking as a joint
task of named entity recognition and entity linking [2] with complementary signals
from images, tables and even documents in other languages [13]. These recent
findings triggered a move of the entire community to work on entity-linking with
deep learning.

Figure 2.2 gives an overview of our methods for representing and matching entities
in a joint embedding space. It zooms in on the (re-)training step in the IDEL
architecture (Figure 2.1). In this section, we first provide a formal description
for our transformation of relational and text data into their respective vector
representations. Next, we formalize a joint embedding space, in which similar pairs
of entities in the relational data and their corresponding entity mentions are kept
close to each other, while dissimilar pairs further apart. Then, we learn a common
joint embedding space with a pairwise contrastive ranking loss function. Finally, in
this joint space we compute a similarity between an embedding vector for relational
and text data.

2.2.1 Relational Data Embeddings

Integrating relational signals in single entity embedding. The relational model
features many rich signals for representing entities, such as relation and attribute
names, attribute values, data types, and functional dependencies between values.
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2. Method 2.2. Embedding Models

Figure 2.2: Overview of representing and matching entities in a joint embedding
space in IDEL.

Moreover, some relations may have further inter-dependencies via foreign keys.
These relation characteristics are important signals for recognizing entities. Our
approach is to represent the “relational entity signatures” relevant to the same
entity in a single entity embedding.

Vector representation of entity relations. To create embeddings we require a
vector space representation. Therefore, we transform relations into vectors as
follows:

Let R (A1, . . . , An, FK1, . . . , FKm) be a relation with attributes A1, . . . , An and
foreign keys FK1, . . . , FKm referring to relations RFK1 , . . . , RFKm . We define the
domain of R as dom (R) = dom (A1)×. . .×dom (An)×dom (FK1)×. . .×dom (FKm).

Embedding attribute data types. Another important clue is data type: we
transform text data from alpha-numeric attribute values, such as CHAR, VARCHAR
and TEXT, in neural embeddings represented by the function text2vec : TEXT →
Rm; we normalize numerical attribute values, such as INTEGER and FLOAT, with
their mean and variance with the function norm : R → R; and we represent the
remaining attributes from other data types as a one-hot encoding (also known as
1-of-k Scheme) [4]. Formally, ∀ai ∈ Ai we define a vector v(a) of a as:

v
Ai

(ai) =


text2vec (ai) dom (Ai) ⊆ Text

norm (ai) dom (Ai) ⊆ Numbers

onehot (ai, Ai) else
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2. Method 2.2. Embedding Models

Embedding foreign key relations. Foreign key relations are another rich source
of signals for representing an entity. Analogous to embeddings of entity relations,
we encode embeddings for these relations as well. We define ∀fkj ∈ FKj the vector
v
FKj

(fkj) of fkj as the sum of the vector representations of all foreign key tuples

vRFKj

(
rfkj

)
, where rfkj ∈ RFKj

is a foreign tuple from RFKj
with fkj as primary

key:

vFKj
(fki) =

∑
rfkj∈RFKj

vRFKj

(
rfkj

)

Concatenating signature embeddings. Finally, we concatenate all individual
embeddings, i.e. attribute embeddings and foreign key embeddings, into a single
embedding for each entity, i.e. ∀r = (a1, . . . , an, fk1, . . . , fkm) ∈ R, the vector vR(r)
of tuple r is defined as:

vR (r) =
vA1 (a1)⊕ · · · ⊕ vAn (an)⊕

vFK1 (fk1)⊕ · · · ⊕ vFKm (fkm)

2.2.2 Text Embeddings

Representing entities in text as spans. Text databases, such as INDREX [14]
and System-T [8], represent entities in text data as so-called span data type:

Given a relation T (Span, Text, Text) which contains tuples
t = (spanentity, textentity, textsentence) where spanentity ∈ Span is the span of the
entity, textentity ∈ Text is the covered text of the entity and textsentence ∈ Text is
the covered text of the sentence containing the entity.

The above formalization covers the entity name, the context in the same sentence and
long range-dependencies in the entire in-document context of the entity. Thereby
it implements the notion of distributional semantics [10], a well-known concept in
computational linguistics.

Vectorizing text spans and their context. Next, we need to vectorize spans
and their context from above. We define the vectorization of text attributes
of relations as a function text2vec which can be “anything” from a pre-trained
sentence embedding or a trainable recurrent network. In our model, we choose
the popular and well suited approach SkipThought [16] from the machine learning
community. Our rationale is the following: First, SkipThought is based on
unsupervised learning of a generic, distributed sentence encoder, hence there is
no extra human effort necessary. Second, using the continuity of text in a
document, SkipThought trains an encoder-decoder model that tries to reconstruct
the surrounding sentences of an encoded passage. Finally, a SkipThought embedding
introduces a semantic similarity for sentences. This can help with paraphrasing and
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synonyms, a core problem in resolving entities between relational and text data. In
our implementation, we use the pre-trained sentence embeddings from SkipThought.

2.2.3 Joint Embedding Space

After the vectorization, we compute transformations for the entity-mentions and
relational data embeddings in a joint embedding space. In this space similar pairs
of entities from relational data and entity-mentions from text are placed close to
each other while dissimilar pairs far apart.

Let the first transformation eR : R → Rm to compute an embedding for a tuple
r ∈ R, while the second transformation eT : T → Rm to compute an embedding for
text t ∈ RT . We define our transformations as follows:

eR (r) = GR (vR (r) ,WR) eT (t) = GT (vT (t) ,WT )

where GR denotes a neural network with weights WR for the transformation of
relational data, and GT an Artificial Neural Network (ANN) with weights WT for
the transformation of text data. Weights WR and WT are learnable parameters and
will be trained with Stochastic Gradient Descent.

Depending on the vector representations used, GR and GT can be feed-forward,
recurrent or convolutional neural networks, or any combination of them. In our
implementation, we use feed-forward networks, because we transform the attribute
values of the relational data and the text with existing neural network models into
a common vector representation.

2.2.4 Pairwise Contrastive Loss Function

Scoring function. By nature, text and relational embeddings represent different
areas in a vector space created from our feed forward networks. Therefore, we must
define a scoring function to determine how similar or dissimilar two representations
in this vector space are. We compare these two embeddings with a scoring function
s (eR, eT ) : Rm × Rm → R≥0, where small values denote high similarities while
larger values dissimilar entities. Currently, we use the cosine distance as the scoring
function s (eR, eT ), since our experiments with different distance measures, such as
euclidean distance, show no notable effect on the accuracy of our results.
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Figure 2.3: A learning step for a relation r with a pairwise contrastive loss
function: before and after. Here, r is the center of both figures, surrounded by

matching text examples t+1 , t+2 and not matching (i.e. contrastive) text examples
t−1 , t−2 , t−3 . The inner circle represents the average score between r and matching

text sT+
r

(r) from equation 2.5. The outer circle is the margin m. The loss function
pulls matching text examples towards r and pushes contrastive examples towards

the outer circle.

Loss function. To train relational and text embeddings, eR and eT , we use
Stochastic Gradient Descent, which conducts a backwards propagation of errors.
Our loss (i.e. error) function is a variation of the pairwise contrastive loss [15] applied
first to the problem of mapping images and their captions into the same vector space.
This loss function has desirable characteristics to solve our problem. First, it can
be applied to classification problems with a very large set of classes, hence a very
large space of 1000s of different entities. Further, it can predict classes for which
no examples are available at training time, hence it will work well in scenarios with
frequent updates without retraining the classifier. Finally, it is discriminative in the
sense that it drives the system to make the right decision, but does not cause it
to produce probability estimates that are difficult to understand when debugging
the system. These properties make this loss function an ideal choice for our entity
linking problem.

Applied to our entity linking task we consider either 1-N or M-N mappings between
relations. We define our loss function as follows:

L (R, T ) =
∑
r∈R

LR (r) +
∑
t∈T

LT (t) (2.1)
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with LR (r) as partial loss for r and LT (t) for t:

LR(r) =
∑

t−∈T−
r

max{0,m + sT+
r

(r)− s(eR(r), eT (t−))} (2.2)

LT (t) =
∑

r−∈R−
t

max{0,m + sR+
t

(t)− s(eT (t), eR(r−))} (2.3)

where T−r denotes the set of contrastive (i.e. not matching) examples and T+
r denotes

the set of matching examples of T for r, such as respectively R−t and R+
t for t.

The hyper-parameter margin m controls how far apart matching (positive) and not
matching (negative) examples should be. Furthermore, the functions sR+

t
(t) and

sT+
r

(r) calculate the average score of all positive examples for r and t:

sR+
t

(t) =
1∣∣R+
t

∣∣ ∑
r+∈R+

t

s
(
eT (t) , eR

(
r+
))

(2.4)

sT+
r

(r) =
1

|T+
r |
∑

t+∈T+
r

s
(
eR (r) , eT

(
t+
))

(2.5)

Figure 2.3 shows a learning step of this loss function for a relation r. In equations
2.2 and 2.3, the addition of sR+

t
(t) and sT+

r
(r) pulls embedding vectors for positive

examples together during the minimization of the loss function by decreasing their
score. Conversely, the subtraction for a contrastive example of s (eT (t) , eR (r−))
and s (eR (r) , eT (t−)) pushes embedding vectors further apart, because increasing
their score minimizes this subtraction. The margin limits the score for a contrastive
example, so that the loss function cannot push the embedding vector of a contrastive
example further. This is crucial to learn mappings between two different vector
spaces.

Overall, we are not aware of any other work where loss functions for mapping pixels
in images to characters are applied to the problem of linking entities from text to
a table. IDEL is the first approach that abstracts this problem to entity linking.
For our specific problem we therefore modified the loss function of [15] by replacing
a single positive example with the average score of all positive examples sR+

t
(t) or

sT+
r

(r). This pulls all positive examples together, enabling our loss function to learn
1-N and M-N mappings between relational data and text.

Hyper-parameters. We evaluate several configurations for representing neural
networks with relational GR or text data GT . Our representation for relational data
contains three layers: the input layer containing 1024 neurons, the second layer 512
neurons and the output layer 256 neurons. To represent text embeddings GT we use
two layers: an input layer with 1024 neurons and an output layer with 256 neurons.
We choose fewer layer for GT , because the dimensionality of their input is smaller
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than that of the relational data. All layers use the activation function Exponential
Linear Unit (ELU), because it has the advantages of Rectified Linear Unit (RELU)
and works for negative inputs, too. We train the model via gradient descent with
Adam as optimizer and apply dropout layers to all layers with a keep probability of
0.75. Since we use dropouts, we can choose a higher learning rate of 1e−05 with an
exponential decay of 0.9 every 1000 batches and set our margin to 0.001.

2.3 Implementation

Despite the fact that several technologies are investigated by the computational
linguistics or the machine learning community, no other database system currently
permits the execution of neural text mining inside its kernel. One reason is the
choice of the RDBMS, which has a significant impact on the overall system. This
section describes the ability of MonetDB to support in-database-analytics through
SQL Python UDFs and to solve the overall entity-linkage task.

We integrate the entity linking process into one single RDBMS, MonetDB, as
depicted in Figure 2.4, and store text, relational data and embeddings in MonetDB.
The computation is either implemented in SQL queries, SQL UDFs or in Python.
We briefly describe this integration in this section. works; then we describe the
system architecture of IDEL; finally we detail the SQL UDFs used in each step of
the entity linking process.

2.3.1 MonetDB/Python/TensorFlow/Annoy

We have integrated the entity linking process into a single RDBMS, MonetDB, as
depicted in Figure 2.4. All data, i.e. text, relational data and embeddings, is stored
in MonetDB. The computation is either done by vanilla SQL queries or SQL UDFs
in Python.

MonetDB is the open-source columnar RDBMS optimized for in-memory processing
of analytical workloads [5] of FashionBrain partner MonetDB Solutions. In
recent years, we enriched its support for in-database analytics by, among others,
introducing MonetDB/Python integration through SQL UDFs [21]. As a result,
MONETDB users can specify Python as the implementation language for their
SQL UDFs. Basically, any Python libraries accessible by the MonetDB server can
be imported. In our work we base on the deep learning library TensorFlow1 and the
nearest neighbor search index for neural embeddings, Spotify Annoy 2. When such
an SQL Python UDF is called in an SQL query, MonetDB automatically starts a
Python subprocess and executes it.

MonetDB exchanges data of relational tables between the SQL engine and the

1https://github.com/tensorflow
2https://github.com/spotify/annoy

D4.1 – Report on Text Joins 15



2. Method 2.3. Implementation
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Embedded Python process
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text
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(2) Search for candidates

(2.1) Compute similarities

(2.2) Compute rankings

(2.3) Select topN

candidates

relational
data

text
data

(1) Create embeddings

Figure 2.4: System architecture of IDEL: all data and computation are integrated
in MonetDB.

embedded Python process by means of NumPy arrays. The MonetDB/Python
integration features several important optimizations to allow efficient executions
of SQL Python UDFs. Zero data transfer and version cost : internally, MonetDB
stores data of each column as a C-array, the same as NumPy arrays. Hence, by
exchanging data between the SQL engine and the Python subprocess by means of
NumPy arrays, it incurs zero conversion and transfer cost. Parallel execution of
SQL Python UDFs: an SQL Python UDF can declared as parallelizable, so that
MonetDB automatically generates parallel execution plan for this UDF.

Figure 2.4 shows the implementation of IDEL in MonetDB. We store relational
data in MonetDB according to their schemas and text data in a table with a single
string-typed column. First, we create embedding vectors for both relational and
text data by two SQL Python UDFs, one for each input table. This step leverages
TensorFlow’s machine learning features to load the pre-trained neural network and
apply it on the input tables. We return embedding vectors as NumPy arrays and
store them as BLOBs. The second step finds matching candidates with the highest
similarities among embeddings. We employ nearest neighbor search with Annoy
for a given embedding, compute a ranked list for each entity according to their
similarities and finally return TopN candidates. All steps are implemented in SQL.

The resulting candidates list can be stored in the database for post-entity-linking
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analysis.

This system architecture is straightforward but flexible and extensible. First, in step
1, we can easily replace one pre-trained neural network with another. Moreover, we
can as easily extend this step to train our own neural network, which is part of
our future work. Similarly, in step 2.1, we can choose different similarity functions
depending on, for instance, their quality versus their computational complexity, and
the characteristics of the input data set. Second, although we have currently decided
to split step 2 into three substeps, we can flexibly decide to change it into more or
less steps, and decide which steps to do in Python and which ones in SQL. Decisions
made here are mainly determined by trying to not break the parallel execution flow
in both MonetDB and Python.

Changes inside this architecture, such as different embedding models or similarity
functions, are transparent to upper layer applications. The main differences that are
noticeable to the applications are the execution time of the entity linking process
and the final results

2.3.2 Create Embeddings

We abstract core functionalities for entity linking as SQL UDFs. This design
principle permits us exchanging functionalities in UDFs for different data sets or
domains.

UDF: EmbedSentences This UDF family embeds text sentences into the joint
vector space. They apply vT and GT from a trained model to generate eT . Because
of the learned joint vector space, the function GT is coupled on GR which computes
the tuple embedding for each table to which we want to link. They take as input
a NumPy array of strings, loads a trained neural network model into main memory
and apply this model to the NumPy array in parallel. TensorFlow allows these
UDFs to easily leverage GPUs to compute the embedding vectors. Finally, these
functions transform an array of embedding vectors into an array of Binary Large
Objects (BLOBs) and returns it to MonetDB. The following example executes the
UDF embed sentence for building to retrieve sentences about buildings and return
their embeddings.

CREATE FUNCTION embed sentences building(sentences STRING)

RETURNS BLOB LANGUAGE PYTHON

{

from monetdb wrapper.embed udf import embed udf

return embed udf().run("path/to/repo","path/to/model",

"sentences", {"sentences": sentences })

}

CREATE TABLE embedd sentences for building AS

SELECT *, embed sentence for building(sentence)

AS embedding FROM sentences;
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UDF: EmbedTuples This UDF family embeds tuples of a table into the joint
vector space. They apply a trained neural network model on vR and GR to generate
eR. As input, they assume arrays of relational columns, and load and apply a trained
model in parallel to input relations and outputs embedding vectors as an array of
BLOBs. The exact signature of this UDF family depends on the schema of the
table. In the following example, we encode the table building with attributes name,
address and owner in the embedding:

CREATE TABLE building with embedding AS

SELECT *, embed building(name, address, owner)

AS embedding FROM building;

2.3.3 Search for Candidates

UDF: QueryNN The next task is, given a vector (e.g. an entity represented in
text), to retrieve a set of similar vectors (e.g. tuples representing this entity in
a table). To avoid expensive cross join of all vectors of relational and text data,
we represent embeddings for entities in a nearest neighbor search index for neural
embeddings. Following benchmarks of [3], we implemented this index with Spotify
Annoy because: i) Annoy is almost as fast as the fastest libraries in the benchmarks,
ii) it has the ability to use static files as indexes which we can share across processes,
iii) Annoy decouples creating indexes from loading them and we can create indexes
as files and map them into memory quickly, and iv) Annoy has a Python wrapper
and a fast C++ kernel, and thus fits nicely into our implementation.

The index bases on random projections to build up a tree. At every intermediate
node in the tree, a random hyperplane is chosen, which divides the space into two
subspaces. This hyperplane is chosen by sampling two points from the subset and
taking the hyperplane equidistant from them. Annoy applies this technique t times
to create a forest of trees. Hereby, the parameter t balances between precision and
performance, see also work on Local sensitive hashing (LSH) by [7]. During search,
Spotify Annoy traverses the trees and collects k candidates per tree. Afterwards,
all candidate lists are merged and the TopN are selected. We follow experiments of
[3] for news data sets and choose t = 200 for k = 400000 neighbors for N = 10.

The example below executes a k-Nearest Neighbours (KNN) search for an embedding
representing relational tuples of table Building in the space of indexed sentences that
represent an entity of the type Building. The query returns the top 10 matching
sentences for this relational entity.

SELECT *

FROM query index((

SELECT id, embedding, 10, 400000,

index embedd sentence for building

FROM embedd building)) knn,

building with embedding r,

sentences for building with embedding s

WHERE r.id = knn.query key AND s.id = knn.result key;
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2.4 Experimental Evaluation

Training, test and cold start scenario In realistic situations, new entities are
regularly added to the database. Hence, it is important for our system to recognize
such cold start entity representations without needing to be re-trained. Hence, we
need to consider previously seen entities for which we learn new matchings (hot
and running system) and entities we have never seen during training (cold start
scenario). To simulate these two scenarios we choose the same setup as described
in [9] and split the set of relational entity instances into 20% unseen entities for the
cold start scenario. We kept the remaining 80% as previously seen entities and split
this set again into 80% for training and 20% for testing.

2.4.1 Experimental Setup

System setup We implemented our model using TensorFlow 1.3, NumPy 1.13
and integrated it into MonetDB (release Jul2017-SP1). We installed these software
packages on a machine with two Intel® Xeon® CPUs E5-2630 v3 with 2.40GHz, 64
GB RAM, SSD discs and 1 Nvidia K80 GPU. The GPU was used for training the
neural networks and computing the embeddings during the runtime measurements.

Measurements Our first set of experiments measures the effectiveness of our
embeddings and entity linking. Given an entity representation from the relational
data, the output of entity linking is an ordered list of sentences where this entity
likely appears. A common measure is Precision@1, which counts how often the
system returns the correct sentence at rank 1. Analogously, Precision@5 and
Precision@10 count how often the correct result returned by the system is among
the first five and ten results. Our second set of experiments measures the efficiency.
We measure execution times for loading and creating embeddings before query run
time and for generating candidates, executing the similarity measure on candidates
and ranking candidates at runtime.

2.4.2 Experimental Results

Entity Linking with very high precision Table 2.1 shows accuracy for Precision@k
for each entity type. We observe high values (≥ 0.80) during testing Precision@1
for all entity types, except City (0.73) and ComicsCharacter (0.76). This indicates
that our system can return the correct entity linking with very high precision. If we
measure the effectiveness of our system at Precision@5, we observe that our system
returns the correct result for each entity, independent of the type, and with a high
accuracy of ≥ 0.93. We report an accuracy of ≥ 0.95 at Precision@10 for all entity
types with a perfect result for entity type university. Note that the columns train
denote “ideal systems” for the given training data. We observe that even an ideal
system fails in rare cases for Astronaut, WrittenWork, City, Food and Airport.
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Prec@1 Prec@5 Prec@10
te tr c te tr c te tr c

Airport 0.90 0.98 0.54 0.96 0.99 0.70 0.99 1 0.79
Astronaut 0.91 0.96 0.88 0.97 0.99 0.98 0.98 1 0.98
Building 0.89 0.99 0.77 0.94 1 0.90 0.97 1 0.95
City 0.73 0.98 0.93 0.93 1 0.98 0.96 1 1
ComicsCharacter 0.76 0.99 0.29 0.97 1 0.80 0.98 1 0.97
Food 0.85 0.94 0.69 0.94 0.98 0.90 0.94 0.98 0.91
Monument 0.94 1 0.90 0.98 1 0.98 1 1 1
SportTeam 0.90 1 0.66 0.97 1 0.83 0.99 1 0.92
University 0.95 1 0.93 0.99 1 1 1 1 1
WrittenWork 0.88 0.95 0.63 0.97 0.99 0.79 0.99 0.99 0.86

Table 2.1: Accuracy in Precision@k of the trained model for each Entity type (te
- test, tr -train, c - cold start).

Phase Step Runtime (sec)
Load Time Loading Model 30.50
Load Time UDF:EmbedTuples 55.00
Load Time UDF:EmbedSentences 150.00
Load Time Create Index for Tuples 0.04
Load Time Create Index for Sentences 3.07

Load Time Sum over all steps 208.1

Query Time Cross Join Top10 115.9
Query Time UDF:QueryNN Top10 Sent. 9.60
Query Time UDF:QueryNN Top10 Tuples 29.15

Table 2.2: Runtime of different stages of IDEL.

Execution Engine Table 2.2 reports execution times averaged over all entity types.
We observe for steps at data loading time, such as embed sentences and relational
tuples, an average of 208 seconds. For the query execution time and creating
candidate tuples, storing embeddings, applying the similarity metric, ranking and
pruning TopK entity mappings, we observe an average of 116 seconds. Our
conclusion is that once a user has set up in IDEL an initial query mapping from
entity types in relational data to sentences in text data, the system can asynchronous
rebuild embeddings in the background to achieve very high Precision@1 values even
for unseen entities for the next time the user hits the same query.

2.4.3 Error Analysis and Discussion

Understanding sampling and computing similarity function To understand the
behavior of IDEL we conducted a closer inspection on results and individual
components. Figure 2.5 shows four snapshots from the joint embedding space in
IDEL during the training of the similarity function. For example, Figure 2.5(a)
visualizes on the right a cluster of 58 different entities of the type building in 380
tuples, while the left cluster denotes 2377 sentences mentioning these entities. Colors
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(a) Initial (b) 100 Batches (c) 200 Batches (d) 1200 Batches

Figure 2.5: The vector space of text and relational embeddings during the
training period at varying batch samples.

indicate distinct entities3. Figure 2.5(b)..(d) show how during training, the shape of
these clusters change. Finally, Figure 2.5(d) shows clusters which combine sentence
and relational representations for the same entity. However, we also observe “yellow”
and “red” entities with fewer training examples compared to the “blue” and “light
blue” entities. Our explanation is that the contrastive pairwise loss function does
not have sufficient “signals” gained from training samples yet to cluster these entities
as well.

Performance for unseen entities suffers from sparse attribute density or too few
sentences IDEL can recognize unseen data with a decent Precision@1>0.6, except
for Airport and ComicsCharacter. This performance is comparable with other state-of-
the-art entity linking systems (see [12]). The low performance for the type Airport is
most probably due to the extreme sparse average tuple density. As a result, during
training the model often retrieves relational tuples with low information gain and
many NULL-values. A closer inspection reveals that several errors for this type are
disambiguation errors for potential homonyms and undiscovered synonyms. The
type ComicsCharacter also performs poorly for unseen entities compared to other
types. This type has the second lowest ratio for Sentence/Instance. Hence, each
distinct comic character is represented on average by 18 sentences. The popularity
of text data, such as comic characters, often follows a Zipf distribution. In fact,
we inspected our set of comic characters and observed that a few characters are
described by the majority of sentences, while most characters are described by
only a few sentences. As a result, the system could not learn enough variances
to distinguish among these seldom mentioned characters.

3To keep the colors in the figures somewhat distinguishable, we show here only the most frequent
entities, instead of all 58 of them.
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Text Databases Authors of Deep Dive [24], InstaRead [11] and System-T [8]
propose declarative SQL-based query languages for integrating relational data with
text data. Those RDBMS extensions leverage built-in query optimization, indexing
and security techniques. They rely on explicitly modeled features for representing
syntactic, semantic and lexical properties of an entity in the relational model. In
this work we extend the text database system INDREX [14, 23] with the novel
functionality of linking relational data to text data. Thereby, we introduce neural
embeddings in a main memory database system, effectively eliminating the need
for explicit feature modeling. Our execution system for INDREX is MonetDB as
stated earlier. To our best knowledge, no other database system so far provides this
functionality for text data.

Embeddings in Databases Only since recently, authors of [6] investigated methods
for integrating vector space embeddings for ANNs in relational databases and query
processing. Authors focus on latent information in text data and other types of data,
e.g. numerical values, images and dates. For these data types they embed the latent
information for each row in the same table with word2vec [19] in the same vector
space. Finally, they run queries against this representation for retrieving similar
rows. Similar to our work, they suggest to compute embeddings for each row and
to access embeddings via UDFs. Our approach goes much further, since we embed
latent information from at least two tables in the same vector space, one representing
entities and attributes while the other representing spans of text data. Because of the
nature of the problem, we can not assume that both representations provide similar
characteristics in this vector space. Rather, we need to adopt complex techniques
such as SkipThought and pair-wise loss functions to compute similarity measures.

Entity Linking and knowledge base completion Entity linking is a well-
researched problem in computational linguistics1. Recently, embeddings have been
proposed to jointly represent entities in text and knowledge graphs [25]. Authors
of [18] use an embedding for relations and entities in the triple format based on
the structures of graphs. However, they do not incorporate additional attributes for
the entities into the embedding; also, they only learn an embedding for binary
relations, not for n-ary relations. At a very high level, we also apply similar
techniques for representing entities in embeddings. However, our approach is based
on SkipThought and a pair wise loss function which works particularly well with

1See http://nlp.cs.rpi.edu/kbp/2017/elreading.html
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many classes (each entity represents its own class) and for sparse data, two data
characteristics often found in practical setups for relational databases. Moreover,
our approach is not restricted to triple-based knowledge bases. We can learn an
embedding for arbitrary n-ary relations and incorporate their attributes and related
entities. Finally, we are not aware of any work that incorporates neural network
based knowledge representation methods into the query processor of an RDBMS.
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4 Conclusions

To our best knowledge, IDEL is the first working database system which permits
executing SQL queries on neural embeddings representing both, text and tables, and
in an RDBMS. We plan to investigate other powerful neural architectures, overcom-
ing vocabulary limitations of the pre-trained SkipThought. We also will inspect
hybrid models considering large external linguistic corpora but also very specific,
potentially domain focused corpora from the text database to improve character
embeddings. Finally, we will investigate deeper effects of other distance functions,
such as the word mover’s distance [17].

This report demonstrates a method on how entities can not only recognized, but
also linked directly inside and RDBMS. This method works through the use of both
MonetDB’s contributions in the FashionBrain project and deep recurrent neural
network architectures. We contribute a SQL and Python based join operator for
text and data in a database, the fully trained model and this generally applicable
method.
While we were unfortunately unable to train IDEL directly on a fashion dataset,
this method already transfers well, as seen in D4.2 and will be straight forward to
apply to a fashion themed entity linking dataset should one become available in the
future.
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