
Horizon 2020

Understanding Europe’s Fashion Data Universe

Time Series Operators for

MonetDB

Deliverable number: D2.4

Version 3.0

Funded by the European Union’s Horizon 2020 research and
innovation programme under Grant Agreement No. 732328

ii

Project Acronym: FashionBrain
Project Full Title: Understanding Europe’s Fashion Data Universe
Call: H2020-ICT-2016-1
Topic: ICT-14-2016-2017, Big Data PPP: Cross-sectorial and

cross-lingual data integration and experimentation
Project URL: https://fashionbrain-project.eu

Deliverable type Other (O)

Dissemination level Public (PU)

Contractual Delivery Date 31 December 2018

Resubmission Delivery Date 4 February 2019

Number of pages 30, the last one being no. 24

Authors Ying Zhang, Pedro E. S. Ferreira, Svetlin Stalinov,
Aris Koning, Martin Kersten - MDBS

Ines Arous, Mourad Khayati - UNIFR

Peer review Tom Oberhauser, Benjamin Winter - BEUTH

Change Log

Version Date Status Partner Remarks
0.1 19/11/2018 Draft MDBS
0.2 15/12/2018 Full Draft MDBS, UNIFR
1.0 20/12/2018 Final MDBS, UNIFR, Rejected 30/01/2019

BEUTH
2.0 04/02/2019 Resubmitted Final MDBS, UNIFR, Rejected 09/03/2020

BEUTH
3.0 15/03/2030 Resubmitted Final 2 MDBS, UNIFR, added URL of RecovDB

live demo in
Abstract & Introduction

Deliverable Description

D2.4 Time Series Operators for MonetDB (M24). This deliverable will report the
extended support for time series data processing in MonetDB, including integration
with the software provided by D4.1. Corresponding software will be made available
through the MonetDB open-source repository.

https://fashionbrain-project.eu

Abstract

In this deliverable, we report the work we have done under the context of T2.3
“infrastructures for scalable cross-domain data integration and management” on
the expended support for time series data processing in MonetDB. This include two
main topics: RecovDB and SQL 2011 window functions in MonetDB.

RecovDB [1] is an Relational Database Management System (RDBMS) for efficient
and accurate recovering of large blocks of missing values in time series. RecovDB
is built using MonetDB and the centroid decomposition technology [5]. The live
demo of RecovDB is available from http://revival.exascale.info/recovery/

recovdb.php.

To strengthen MonetDB’s support for time series and continues query processing, we
have added the majority of the window functions defined by the SQL 2011 standard
into MonetDB. In addition, we have rigorously revised the existing code base so that
the window functions in MonetDB are now implemented in an efficient way.

iii

http://revival.exascale.info/recovery/recovdb.php
http://revival.exascale.info/recovery/recovdb.php

Table of Contents

List of Figures v

List of Tables v

List of Acronyms and Abbreviations vi

1 Introduction 1
1.1 Scope of this Deliverable . 2

2 Time Series Missing Blocks Recovery 4
2.1 Design Considerations . 6
2.2 RecovDB Recovery Algorithm . 9

2.2.1 Centroid Decomposition (CD) 9
2.2.2 Recovery Algorithm . 9

2.3 RecovDB Implementation . 10
2.4 RecovDB Evaluation . 11
2.5 RecovDB Web Interface . 12

2.5.1 Example Data Sets . 13
2.5.2 Use Cases . 14

2.6 Conclusions . 14

3 MonetDB Window Function Extensions 15
3.1 Feature Extensions . 15

3.1.1 Window Analytic Functions 15
3.1.2 Aggregate Functions . 16
3.1.3 Window Functions Frames . 16

3.2 Example Queries . 17

4 Conclusions 22

Bibliography 23

iv

List of Figures

2.1 Zalando sales time series, one for each fashion item. Missing values
are indicated by dashed lines. The three time series also show both
positive and negative correlations: coats and jackets are more popular
in the cold months, which polo’s are more popular in the warm months. 4

2.2 Meteorological time series of temperature and humidity values
measured in Basel, Switzerland during 2017 – 2018. The missing
blocks are denoted by dashed lines. 7

2.3 RecovDB performance. 12

2.4 GUI of the RecovDB demo. 13

3.1 Seven days moving average of Zalando sales data gross amount. . . . 21

List of Tables

2.1 Fashion sales. 5

v

List of Acronyms and Abbreviations

CD Centroid Decomposition

DBMS Database Management System

FaBIAM FashionBrain Integrated Architecture

ICDE 2019 35th IEEE International Conference on Data Engineering

OLAP Online Analytical Processing

PCC Pearson Correlation Coefficient

RDBMS Relational Database Management System

RMSE Root-Mean-Square Error

SSV Scalable Sign Vector

UDF User Defined Functions

vi

1 Introduction

The FashionBrain project targets at consolidating and extending existing European
technologies in the area of database management, data mining, machine learning,
image processing, information retrieval, and crowd sourcing to strengthen the
positions of European (fashion) retailers among their world-wide competitors.

For fashion retailers, the ability to efficiently extract, store, manage and analyse
information from heterogeneous data sources, including structured data (e.g.
product catalogues and sales information), unstructured data (e.g. twitter, blogs and
customer reviews), and binary (multimedia) data (e.g. YouTube and Instagram), is
business critical. Therefore, in work package WP2 “Semantic Data Integration for
Fashion Industry”, one of the main objectives is to

“Design and deploy novel big data infrastructure to support scalable
multi-source data federation, and implement efficient analysis
primitives at the core of the data management solution.”

This objective is addressed by task T2.3 “Infrastructures for scalable cross-domain
data integration and management”, which focus on the implementation of cross-
domain integration facilities to support advanced text and time series analysis.

The work we have done in the context of T2.3 is being reported now in two
deliverables both due in M24. In the sibling deliverable D2.3 “Data Integration
Solution”, we describe the design, implementation and application of FashionBrain
Integrated Architecture (FaBIAM), a MonetDB-based architecture for storing,
managing and analysing of fashion data.

Time series data are series of values obtained at successive times with regular or
irregular intervals between them. Many fashion data, such as customer reviews,
fashion blogs, social media messages and click streams, can be regarded as time
series. Fashion retailers need efficient, accurate and easy-to-use tools to analyse
such fashion time series, so as to understand the current trends, detect changes in
the moods and even predict future interests of their (potential) customers. In this
deliverable, we present two major extensions in the analytical RDBMS MonetDB1

to facilitate fashion time series analysis:

• RecovDB [1]: many fashion time series contains “holes”, because the data
records are often produced at irregular time intervals, or because data can
get lost for various reasons such as transmission errors. However, existing
time series analysis tools, models and algorithms often require perfect input

1https://www.monetdb.org

D2.4 – Time Series Operators for MonetDB 1

https://www.monetdb.org

1. Introduction 1.1. Scope of this Deliverable

time series (i.e. regular time intervals with all values present). Hence,
recovering missing values in time series (also often referred to as “missing
values imputation”) has become an important prerequisite for time series
analysis. Therefore, we have developed RecovDB, an RDBMS for efficient and
accurate recovering of large blocks of missing values in time series. RecovDB
is built using MonetDB and the centroid decomposition technology [5]. This
is a joint work between the partners MDBS and UNIFR. This work has
been published at 35th IEEE International Conference on Data Engineering
(ICDE 2019). The live demo of RecovDB is available from http://revival.

exascale.info/recovery/recovdb.php.

• SQL 2011 window functions: to strengthen MonetDB’s support for time series
and continues query processing, we have added the majority of the window
functions defined by the SQL 2011 standard into MonetDB. In addition, we
have rigorously revised the existing code base so that the window functions in
MonetDB are now implemented in an efficient way2.

1.1 Scope of this Deliverable

The work presented here has been guided by the business scenarios identified in
D1.2 “Requirement analysis document”, in particular:

• Scenario 3: Brand Monitoring for Internal Stakeholders

– Challenge 7: Online Analytical Processing (OLAP) Queries over Text-
and Catalogue Data

• Scenario 4: Fashion Trends Analysis

– Challenge 8: Textual Time Trails

– Challenge 9: Time Series Analysis

The work presented here relates to the following deliverables:

• D1.2 “Requirement analysis document”: in which our motivating fashion time
series use cases were defined.

• D2.2 “Requirement analysis document WP2”: in which the Zalando sales data
sets used in this deliverable are described.

• D2.3 “Data Integration Solution”: in which the time series operators are used.

• D5.4 “The classification algorithm and its evaluation on fashion time series”:
in which Centroid Decomposition (CD) was described.

• D5.5 “Demo on Fashion Trend Prediction”: in which RecovDB will be used.

The reminder of this deliverable is as follows. In Chapter 2, we detail the design,
implementation and use cases of RecovDB. In Chapter 3, we describe the SQL 2011

2Before FashionBrain, MonetDB only supported a small number of window functions implemented
in a naive way that does not scale to larger data sets.

D2.4 – Time Series Operators for MonetDB 2

http://revival.exascale.info/recovery/recovdb.php
http://revival.exascale.info/recovery/recovdb.php

1. Introduction 1.1. Scope of this Deliverable

window functions in MonetDB Finally, in Chapter 4 we conclude with outlook for
future work.

D2.4 – Time Series Operators for MonetDB 3

2 Time Series Missing Blocks Recovery

Figure 2.1: Zalando sales time series, one for each fashion item. Missing values
are indicated by dashed lines. The three time series also show both positive and

negative correlations: coats and jackets are more popular in the cold months,
which polo’s are more popular in the warm months.

In its most basic form, a time series is a series of values that have been
measured/obtained/generated/etc. at (successive) timestamps with regular or
irregular intervals between them. Each value is typically annotated with its
corresponding timestamp. In the fashion industry, a large portion of data is time
series. For instance, customer reviews, fashion blogs, social media messages and
click streams can be all regarded as time series with irregular time intervals1. Since
the fashion industry is all about understanding and anticipating what fashion trends
the general public is interested at a given time, time series analysis is a particularly
important topic for the fashion retailers.

When analysing fashion time series, we should always be prepared to handle missing
values, because i) the aforementioned fashion data often come into existence at
irregular time intervals; ii) data can get lost for various reasons; and iii) even if
we have several perfectly regular time series, they can have different time intervals,
which, when aligned by their timestamps, results in missing values. However, many
existing tools, algorithms and models for time series analysis assume perfect input
time series, i.e. all time series are aligned by their timestamps, the time intervals are

1https://en.wikipedia.org/wiki/Unevenly_spaced_time_series

D2.4 – Time Series Operators for MonetDB 4

https://en.wikipedia.org/wiki/Unevenly_spaced_time_series

2. Time Series Missing Blocks Recovery

regular and all values at each timestamp are known. Hence, missing values recovery
is often the first and a crucial step for time series analysis.

Example 1 (Fashion time series). Consider Zalando apparel sales which are
recorded, e.g. on a daily basis as shown in Figure 2.1 (taken from the
“Zalando data M3” data sets described in D2.2). The sales numbers of each fashion
item is recorded in one time series. There are two main features of interest: i)
missing values in the time series; and ii) correlations between the time series.

First, fashion supply chains commonly deploy historical sales data gathered from
downstream to perform predictions according to which all the upstream activities are
planned (e.g., manufacturing scheduling, transportation, inventory and warehouse
management). The predictions are pivotal for fashion retailers as they govern the
overall revenue generated for all partners within the supply chain. The accuracy of
the prediction heavily relies on the use of the complete fashion data. However, due
to various reasons, e.g transmission errors or data integration malfunctions, missing
values are omnipresent in fashion time series data. For example, in the case of the
largest European fashion retailer Zalando, it is not uncommon that around 40% of
sales data are missing. Table 2.1 shows an excerpt of Zalando’s sales record shown
in Figure 2.1. Each row describes the aggregated number of items sold for three
fashion categories during a specific day, and the missing values are marked with the
placeholder ‘?’. The values have been normalized using the commonly used z-score
normalization technique.

date coats jacket polo . . .

1 0.054 0.068 ? . . .
2 ? ? ? . . .
3 ? 0.061 ? . . .
4 ? ? 0.047 . . .
.

Table 2.1: Fashion sales.

Secondly, fashion sales time series often has seasonal patterns, i.e. items that belong
to the same season tend to have similar sales fluctuations. For example, Figure 2.1
shows that coats and jackets are more popular during winter and hence, their sales
are positively correlated. However, polo shirts are more popular in the summer and
hence, their sales show a negative correlation with the sales of coats and jackets.
Thus, a missing value recovery technique should ideally be able to take advantages
of such correlations to improve its efficiency and/or accuracy.

Inspired by the use cases of time series data in the FashionBrain project, we have
designed and implemented RecovDB, an RDBMS enhanced with advanced matrix
decomposition technology for missing blocks recovery. In this chapter, we detail the

D2.4 – Time Series Operators for MonetDB 5

2. Time Series Missing Blocks Recovery 2.1. Design Considerations

main features of RecovDB that are important for today’s time series analysis but
are lacking in state-of-the-art technologies:

1. Recovering large missing blocks in multiple time series at once;

2. Achieving high recovery accuracy by benefiting from different correlations
across time series;

3. Maintaining recovery accuracy under increasing size of missing blocks;

4. Maintaining recovery efficiency with increasing time series’ lengths and the
number of time series; and

5. Supporting all these features while being parameter-free.

We also compare the efficiency and accuracy of RecovDB against state-of-the-art
missing value recovery systems.

In the remainder of this chapter, we first discuss the state-of-the-art of time series
missing value recovery, which has largely determined the design choices of RecovDB.
In Section 2.2, we describe the recovery algorithm. In Section 2.3, we describe the
implementation of RecovDB. In Section 2.4, we present evaluation results against
two state-of-the-art systems on recovery efficiency and accuracy. In Section 2.5,
we describe the web application we have been working on, which will be used
to visualise the aforementioned main features of RecovDB. This includes three
scenarios. Scenario 1 shows that RecovDB can recover multiple time series in one
go. Scenario 2 shows that RecovDB maintains the recovery accuracy high when
increasing sizes of missing blocks. Scenario 3 shows that even with more and/or
longer time series, RecovDB can still recover the missing blocks efficiently. For
all three scenarios, one merely needs to select the desired time series and press
the “Recover” button, hence no parameter tuning is required. Finally, Section 2.6
concludes.

2.1 Design Considerations

Our work is motivated by the properties of acquired data and the requirements for
their subsequent analysis in many real-world use cases. In fact, the missing value and
correlation properties we have observed in fashion time series are generally present
in other time series as well.

Example 2 (Meteorology time series). Consider the meteorology domain, in which
sensors are used to record various weather conditions to perform weather forecast.
Figure 2.2 shows three time series containing temperature and humidity values
measured in the city of Basel, Switzerland during 2017 – 20182. Next to trends,
weather is another important factor that can have significant effect on the fashion
sales. For instance, in the Netherlands, unusually warm winter months in recent
years have caused consumers to withhold their interests in winter clothes. This

2Source:https://www.meteoblue.com

D2.4 – Time Series Operators for MonetDB 6

https://www.meteoblue.com

2. Time Series Missing Blocks Recovery 2.1. Design Considerations

Figure 2.2: Meteorological time series of temperature and humidity values
measured in Basel, Switzerland during 2017 – 2018. The missing blocks are

denoted by dashed lines.

has forced the fashion retailers to put their winter collections back to storage, while
refilling their assortments with offerings for warm weather.

When analyzing such meteorological time series, there are a number of important
aspects to take into account. First, within the same (scientific) domain, different
time series often exhibit some types of correlations. In Figure 2.2, the two
temperature time series, “Temp. 2017” and “Temp. 2018”, have a positive
correlation with each other, while they both have a negative correlation with the
humidity time series “Humidity 2018”. Second, real-world time series often contain
a large number of blocks of missing values due to sensor failures, power outages,
transmission problems, etc. Some missing blocks can be rather big (shown as dashed
lines in Figure 2.2), because, for instance, it can take minutes, hours or even days for
a broken sensor to be replaced. Finally, many of the analysis tools and prediction
models that meteorologists use to perform weather forecast require complete time
series (i.e. the set of the input time series must have the same length, same time
interval and all values are known).

In addition, even if a tool can work with incomplete time series, missing values are
considered harmful. For instance, missing values often yield incorrect or ill-defined
query results [3]. Also, missing values can unexpectedly introduce bias into the
time series which might significantly alter their statistical properties, such as the
correlations between time series. This in turn can affect further data analysis tasks,
e.g. data sampling, exploration and prediction, rendering their results pointless.

Given the amount of data we nowadays need to deal with and the requirements of
existing models/tools, efficient and accurate recovery of large missing blocks in time
series has become a prerequisite to enable the work of many analytical applications.

D2.4 – Time Series Operators for MonetDB 7

2. Time Series Missing Blocks Recovery 2.1. Design Considerations

Existing recovery techniques have several drawbacks. They either focus on repairing
very small missing blocks (i.e., single missing values or only a handful of consecutive
missing values) which generally can not yield a high accuracy when applied on
big missing blocks [9], or they repair individual time series, while ignoring their
correlations with other similar time series [10]. This limits the recovery accuracy,
because in many systems today, multiple sensors are used to record the same/similar
measurement, which makes using correlation beneficial in many applications such
as error detection or missing values recovery.

Moreover, existing techniques are often stand-alone, as opposed to being integrated
into a database system. As a result of this, the users of these tools have to
conduct a number of time consuming and error-prune tasks themselves, such as
either export/import time series from/into a database or do all data management
work themselves, repeatedly load the data files and convert them to some internal
format, and write code for every action that needs to be conducted on the time
series (e.g. filtering and aggregations).

The integration of data mining tasks such as the recovery of missing values
in industrial Database Management System (DBMS)s has so far received scant
attention. This is mainly because external statistical and data mining tools, such
as R3 and WEKA4, offer a comprehensive set of recovery techniques. However, to
use these tools, one will have to export time series data already stored in a DBMS
into flat files. This approach has a number of serious drawbacks, especially with
growing data sizes: i) many of those statistical tools can only operate on data
fitting into the main memory; ii) potential performance bottleneck due to data
exporting and reloading; iii) loss of data provenance; and iv) losing fundamental
DBMS functionality, e.g. query processing, security, concurrency control and fault
tolerance) [6].

To overcome the aforementioned problems, we built RecovDB, an RDBMS
enhanced with advanced missing blocks recovery technology, which is based on our
memory-efficient matrix decomposition technique, the CD [5], to perform scalable
and accurate recovery of missing values. The recovery algorithm has been tightly
integrated into the open-source analytical RDBMS MonetDB [2] as native User
Defined Functions (UDF)s. With this architecture, RecovDB has a number of
properties that are highly desirable for missing blocks recovery in large time series,
which many of the existing recovery techniques fall short in providing (one or a
combination of):

Parameter-free recovery Parametric recovery techniques are based on fine-tuning
some input parameters which requires an expertise of the application field and
the types of time series. RecovDB avoids parameter tuning by performing
recovery based on the centroid value of all time series. The centroid value is
the only statistical property we use for the recovery.

3https://www.r-project.org
4https://www.cs.waikato.ac.nz/~ml/weka

D2.4 – Time Series Operators for MonetDB 8

https://www.r-project.org
https://www.cs.waikato.ac.nz/~ml/weka

2. Time Series Missing Blocks Recovery 2.2. RecovDB Recovery Algorithm

Correlation-aware recovery The CD algorithm embeds the correlation across time
series yielding a recovery with better performance and higher accuracy.

Large missing blocks in multiple time series By using advanced matrix decom-
position technique, RecovDB is capable of accurately recovering multiple time
series with large missing blocks in one go, something that cannot be handled
well by standard statistical methods such as interpolations.

Full-fledged DBMS support Due to the tight integration, RecovDB can exploit
MonetDB’s full power as a highly optimized analytical RDBMS to handle the
remaining data management and pre-/post-processing work.

2.2 RecovDB Recovery Algorithm

The recovery algorithm is based on our memory-efficient algorithm to compute the
CD for long time series [5]. This section first defines several basic concepts used in
CD, before describing the recovery algorithm.

2.2.1 Centroid Decomposition (CD)

Let X be an n×m matrix containing m time series each with n numerical values. CD
decomposes X into an n×m matrix L and an m×m matrix R so that X = L ·RT ,
where RT is the transpose of R. The function CD(X,m−1) returns the first m−1

columns of L and R so that their product X̃ is an approximation of X.

The most challenging part of computing the CD of X is to find the maximizing
sign vector Z, which contains only 1s and −1s, that maximizes the centroid value
‖XT ·Z‖, where XT is the transpose of X and ‖·‖ denotes the norm of a vector.
To efficiently compute Z, we use our Scalable Sign Vector (SSV) algorithm [5],
which embeds the correlation across time series without constructing the correlation
matrix. The SSV algorithm maintains linear complexity for both time and space
with an increasing number of time series.

2.2.2 Recovery Algorithm

Algorithm 1 depicts our recovery algorithm RecovM. It uses CD to recover missing
values in multiple time series in one go. RecovM takes as input a matrix X and a
list T of pairs indicating the rows and columns of the missing values in X. The
recovery starts by initializing the missing values using linear interpolation (line 1).
Then, we use SSV to efficiently compute Z (line 2), which is then used to compute

the approximated matrix X̃ (lines 4-6). Finally, the values in X with positions in

T are updated with their corresponding ones in X̃ (lines 6-8). The recovery process
continues until the Frobenius5 difference ‖X − X′‖F (as defined by Equation 2.1)

5https://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm

D2.4 – Time Series Operators for MonetDB 9

https://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm

2. Time Series Missing Blocks Recovery 2.3. RecovDB Implementation

Algorithm 1: RecovM(X, T).

Input : n×m matrix X; List of missing time points T
Output: Matrix with recovered values X̃
Linearly interpolate all missing values in X;
Z := SSV(X);
repeat

X′ := X;

L̃, R̃ := CD(X′,m− 1);

X̃ := L̃ · R̃T ;
// Update missing values

foreach (i, j) ∈ T do
xij := x̃ij;

until ‖X−X′‖F < ε;

return X̃;

between X and X′ falls below a small threshold ε (by default 10 5) (lines 3-9).

‖X−X′‖F =

√√√√ n∑
i=1

(xi − x′i)2, where xi ∈ X, x′i ∈ X ′ (2.1)

2.3 RecovDB Implementation

RecovDB is implemented using MonetDB, an open-source RDBMS optimized for
in-memory processing of analytical workloads [2]. Internally, MonetDB stores the
data of each SQL column as a single C array. This columnar storage model matches
nicely with time series data.

CREATE TABLE tss(ts timestamp, v1 float, .., vn float);

CREATE FUNCTION recov(ts timestamp, v1 float, .., vn float)

RETURNS TABLE (ts timestamp, f1 float, .., fn float) ...;

SELECT * FROM recov((SELECT ts, v1, v3, v7 FROM tss WHERE ts BETWEEN $TS_MIN AND $TS_MAX));

The SQL queries above show a skeleton of the implementation. First, we store all
time series of one data set in a single table6 containing one timestamp column
and a number of value columns to hold the values of the time series (after
some preprocessing to align the timestamps). Then, we implemented RecovM (see
Algorithm 1) and its auxiliary functions as native SQL UDFs in MonetDB7. The

6Assuming those time series contain related information, e.g. a weather data set can contain time
series of temperature and wind speed.

7www.monetdb.org/Documentation/Cookbooks/SQLrecipes/UserDefinedFunction

D2.4 – Time Series Operators for MonetDB 10

www.monetdb.org/Documentation/Cookbooks/SQLrecipes/UserDefinedFunction

2. Time Series Missing Blocks Recovery 2.4. RecovDB Evaluation

table returning function8 recov is a wrapper for RecovM. It takes one column of
timestamps and multiple columns of time series values containing NULLs as missing
blocks as its inputs, and passes the value columns to RecovM for imputation. The
recovered time series are returned together with the original timestamps in a single
table9. Finally, we use recov in a SELECT query to recover the values of three time
series within a given time period.

2.4 RecovDB Evaluation

To evaluate the efficiency and accuracy of RecovDB, we have conducted extensive
experiments against two state-of-the-art systems in missing value imputation:
ImputeDB [3] and BayesDB [8]. We measure i) the runtime to perform the full
recovery, and ii) the accuracy of the recovery using the Root-Mean-Square Error
(RMSE) between the original block and the recovered one.

We used the BAFU data set provided by the BundesAmt Für Umwelt (the Swiss
Federal Office for the Environment)10. This data set contains water discharge time
series of 12 different Swiss rivers recorded every 30 min during 2010 – 2015 resulting
in 80k records per time series. The Pearson Correlation Coefficient (PCC)11 between
these time series range from 0.03 (very low) to 0.89 (quite high), which allows us to
evaluate RecovDB for different correlation “strengths”. Each tuple in a time series
contains a timestamp and the value of the measurement.

To evaluate the efficiency of RecovDB, we used two set-ups. First, we fixed the
length of the 12 time series to 10k, while incrementally dropping 10% of successive
values from three different time series (the missing blocks are partially overlapping).
Figure 2.3a shows that the runtime of RecovDB is barely sensitive to the percentage
of missing values and is up to 5x faster than ImputeDB (0.17sec vs. 1sec) and up to
2900x faster than BayesDB (0.17sec vs. 500sec). Second, we increase the length of
all 12 time series from 10k to 80k (Figure 2.3b). Our results show that RecovDB
is up to 10x faster than ImputeDB (1.67sec vs 17.77sec), and up to four orders of
magnitude faster than BayesDB (0.8sec vs 3343sec).

To evaluate the accuracy of RecovDB, we used the same two set-ups, but measured
the RMSEs instead. Figure 2.3c shows that the RMSE of RecovDB is barely
affected with more missing values while the RMSE of ImputeDB and BayesDB
tends to increase with the percentage of missing values. RecovDB is up to 7.9x
more accurate than ImputeDB (0.18 vs. 1.42) and 3.4x more accurate than BayesDB
(0.17 vs. 0.57).

Figure 2.3d shows that when increasing the length of time series, RecovDB is up

8www.monetdb.org/Documentation/Manuals/SQLreference/Functions
9Passing around (a pointer to) the ts column is merely an easy way to keep the repaired time
series annotated with their timestamps. This does not incur additional space and computation.

10https://www.bafu.admin.ch/
11https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

D2.4 – Time Series Operators for MonetDB 11

www.monetdb.org/Documentation/Manuals/SQLreference/Functions
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

2. Time Series Missing Blocks Recovery 2.5. RecovDB Web Interface

(a) Runtime with increasing missing
values.

(b) Runtime with increasing time series
length.

(c) Accuracy with increasing missing
values.

(d) Accuracy with increasing time series
length.

Figure 2.3: RecovDB performance.

to 8.3x more accurate than ImputeDB (0.18 vs 1.49) and 4x more accurate than
BayesDB (0.25 vs 0.99).

2.5 RecovDB Web Interface

We have been working on a web application, which will be used to show case the main
features of RecovDB. Figure 2.4 shows a screenshot of the RecovDB web interface.
Above the graph, one can load more data with the “load time series” button. Seven
time series were already loaded and each was assigned a different color and is denoted
by its name. One can activate/deactivate a time series by clicking on its legend. The
values of the three selected time series are visualised in the main graph below. The
sliding bar under the main graph shows that we have zoomed in to only view their
values in 1985. At the right-side of the GUI, some textual information about the
loaded time series is given, followed by some simple options to change the default
number of the time series to be repaired, the time series to be used for correlation,

D2.4 – Time Series Operators for MonetDB 12

2. Time Series Missing Blocks Recovery 2.5. RecovDB Web Interface

Swiss rivers discharge
Source: Federal Office for the Environment FOEN

Unit: m3/s

Recover

Recover time: -

Frobenius distance: -

No. iterations recovery algorithm: -

load time series

Additional missing values

0%

Figure 2.4: GUI of the RecovDB demo.

the recovery threshold (i.e. ε in Algorithm 1), and the percentage of additional
missing values to introduce. By clicking the “Recover” button, one can start the
recovery process for the selected time series. Some statistics will be displayed in the
text fields under this button. Finally, the recovered time series is visualized in the
main window.

2.5.1 Example Data Sets

In addition to the BAFU data set described in Section 2.3, we will provide more
data sets.

To evaluate our system on fashion context, we use sales data set provided by
Zalando [4]. The fashion data set contains 950 time series with up to 800 normalized
observations each ranging from 2013 to 2015 and with a granularity of 1 day. Their
PCCs range from −0.8 to 0.93, which allows us to evaluate RecovDB with both
positive and negative correlations.

The MeteoSwiss data set, provided by the Swiss Federal Office of Meteorology and
Climatology (meteoswiss.admin.ch), has 20 weather time series each containing
200k records measured every 10 min in different Swiss cities. Their PCCs only
range from −0.12 to 0.9, but this data set allows us to evaluate RecovDB with
fairly long time series.

The Gas concentration data set [7] contains the concentration level of 24 chemical
substances each represented as a time series of 4k records measured every 6 hrs.
These measurements were collected in a gas delivery platform facility situated at
the University of California in San Diego. This data set contains a larger number
of negatively correlated time series with PCCs in [−0.75, 0.78].

D2.4 – Time Series Operators for MonetDB 13

meteoswiss.admin.ch

2. Time Series Missing Blocks Recovery 2.6. Conclusions

2.5.2 Use Cases

This web interface will provide three scenarios to showcase the main properties of
RecovDB.

US1: recover multiple time series at once In this use case, one can select
multiple time series with different number of missing blocks of different lengths
in the time series. The locations of missing blocks across different time
series can be distinct or (partially/fully) overlapping. By clicking the Recover
button, one can observe that all missing blocks in all time series are repaired in
one go. If the missing blocks have been artificially introduced (see US2 below),
the web interface will display both the original values and the repaired values
so that users can easily compare the quality of the repair.

US2: accurate recovery with increasing missing values In this use case, one can
specify a percentage of missing values in a text field. The web interface will
remove this percentage of values from the selected range of the selected time
series. By clicking the “Recover” button, all time series will be repaired at
once. To compare the accuracy of the recovery, the web interface will show
the original values in solid lines, and the recovered values in dotted lines.
By specifying larger percentages, one shall be able to observe a fairly stable
accurate recovery.

US3: efficient recovery with increasing data size In this use case, one can vary
the numbers of selected time series and/or the range of the timestamps.
For each configuration, the total recovery time will be displayed under the
“Recover” button. By increasing the selection, one shall be able to observe
that the execution time slightly increases.

2.6 Conclusions

In this chapter, we have presented RecovDB, a parameter free, efficient
and accurate missing blocks recovery system for time series based on matrix
centroid decomposition and the RDBMS MonetDB. We have described its design
considerations, main algorithm, system design and implementation, performance
and accuracy evaluation, and the initial version of a web interface to visualise its
main features. In the remainder of the FashionBrain project, we will continue
improve the implementation of RecovDB under WP5, so that RecovDB can be
used to facilitate fashion trends prediction.

D2.4 – Time Series Operators for MonetDB 14

3 MonetDB Window Function Extensions

To increase MonetDB’s ability to process time series data, We have extended
MonetDB’s support for the SQL window functions to cover the majority as specified
by the 2011 revision of the SQL standard1 in the context of T2.3. In this chapter, we
elaborate the functionality that has been added together with some example queries
to show their usage.

3.1 Feature Extensions

In this section we give specifications of the new window functions.

3.1.1 Window Analytic Functions

Besides the existing RANK(), DENSE RANK() and ROW NUMBER() functions, we have
implemented all the remaining analytic functions listed in the SQL standard:

• PERCENT RANK():DOUBLE - calculates the relative rank of the current row, i.e.
(rank() - 1) / (rows in partition - 1).

• CUME DIST():DOUBLE - calculates the cumulative distribution, i.e. the number
of rows preceding or peer with current row / rows in partition.

• NTILE(nbuckets BIGINT):BIGINT - enumerates rows from 1 in each partition,
dividing it in the most equal way possible.

• LAG(input A[, offset BIGINT[, default value A]]):A - returns input
value at row offset before the current row in the partition. If the offset row
does not exist, then the default value is output. By default offset is 1 and
default value is NULL.

• LEAD(input A[, offset BIGINT[, default value A]]):A - Returns in-
put value at row offset after the current row in the partition. If the offset
row does not exist, then the default value is output. By default offset is
1 and default value is NULL.

• FIRST VALUE(input A):A - Returns input value at first row of the window
frame.

• LAST VALUE(input A):A - Returns input value at last row of the window
frame.

1https://sigmodrecord.org/publications/sigmodRecord/1203/pdfs/10.industry.zemke.

pdf

D2.4 – Time Series Operators for MonetDB 15

https://sigmodrecord.org/publications/sigmodRecord/1203/pdfs/10.industry.zemke.pdf
https://sigmodrecord.org/publications/sigmodRecord/1203/pdfs/10.industry.zemke.pdf

3. MonetDB Window Function Extensions 3.1. Feature Extensions

• NTH VALUE(input A, nth BIGINT):A - Returns input value at nth row of the
window frame. If there is no nth row in the window frame, then NULL is
returned.

3.1.2 Aggregate Functions

We have extended our existing aggregate functions to support aggregate window
functions:

• MIN(input A) : A

• MAX(input A) : A

• COUNT(*) : BIGINT

• COUNT(input A) : BIGINT

• SUM(input A) : A

• PROD(input A) : A

• AVG(input A) : DOUBLE

3.1.3 Window Functions Frames

Our window functions now support frame specifications from the SQL standard.
The fully implemented SQL grammar is listed bellow:

window_function_call:

{ window_aggregate_function | window_rank_function } OVER { ident | ‘(’ window_specification ‘)’ }

window_aggregate_function:

AVG ‘(’ query_expression ‘)’

| COUNT ‘(’ { ‘*’ | query_expression } ‘)’

| MAX ‘(’ query_expression ‘)’

| MIN ‘(’ query_expression ‘)’

| PROD ‘(’ query_expression ‘)’

| SUM ‘(’ query_expression ‘)’

window_rank_function:

CUME_DIST ‘(’ ‘)’

| DENSE_RANK ‘(’ ‘)’

| FIRST_VALUE ‘(’ query_expression ‘)’

| LAG ‘(’ query_expression [‘,’ query_expression [‘,’ query_expression]] ‘)’

| LAST_VALUE ‘(’ query_expression ‘)’

| LEAD ‘(’ query_expression [‘,’ query_expression [‘,’ query_expression]] ‘)’

| NTH_VALUE ‘(’ query_expression ‘,’ query_expression ‘)’

| NTILE ‘(’ query_expression ‘)’

| PERCENT_RANK ‘(’ ‘)’

| RANK ‘(’ ‘)’

| ROW_NUMBER ‘(’ ‘)’

window_specification:

[ident] [PARTITION BY column_ref [‘,’ ...]] [ORDER BY sort_spec]

[{ ROWS | RANGE | GROUPS } { window_frame_start | BETWEEN window_bound AND window_bound }

[EXCLUDING { CURRENT ROW | GROUP | TIES | NO OTHERS }]]

window_bound:

UNBOUNDED FOLLOWING

| query_expression FOLLOWING

D2.4 – Time Series Operators for MonetDB 16

3. MonetDB Window Function Extensions 3.2. Example Queries

| UNBOUNDED PRECEDING

| query_expression PRECEDING

| CURRENT ROW

window_frame_start:

UNBOUNDED PRECEDING

| query_expression PRECEDING

| CURRENT ROW

The supported frames are: ROWS, RANGE and GROUPS.

• ROWS - frames are calculated on physical offsets of input rows.

• RANGE - result frames are calculated on value differences from input rows (used
with a custom PRECEDING or FOLLOWING bound requires an ORDER BY clause).

• GROUPS - groups of equal row values are used to calculate result frames (requires
an ORDER BY clause).

After a window frame declaration, the window bounds must be specified (the
window function will be applied to each frame derived from each row in the
input). If window frame start bound is provided, then the frame’s end will
be set to CURRENT ROW. An UNBOUNDED PRECEDING bound means the first row of
a partition, while an UNBOUNDED FOLLOWING means the last row of a partition.
In query expression PRECEDING (i.e. frame rows before the current row) and
query expression FOLLOWING (i.e. frame rows after the current row) bounds, the
query expression can evaluate to a single atom (use the same bound for every
input row), or a column (use a different bound for each input row). In either case,
every query expression value must be non-negative and non-NULL, as negative and
NULL bounds are not defined for SQL window functions. CURRENT ROW is equivalent
to 0 PRECEDING and 0 FOLLOWING on either side of the bound.

The SQL standard allows an EXCLUDING clause after the bounds definition. At the
moment only EXCLUDE NO OTHERS (i.e. default one) is implemented, which means
all rows in the window frame are used for computation of the analytic function.

The frame specification has been implemented for aggregation functions, as
well as the functions FIRST VALUE, LAST VALUE and NTH VALUE. The default
frame specification is RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

when there is an ORDER BY clause, and RANGE BETWEEN UNBOUNDED PRECEDING AND

UNBOUNDED FOLLOWING when an ORDER BY clause is not present.

3.2 Example Queries

In this section, we use several example SQL queries to show how to use some of the
new window functions.

CREATE TABLE analytics (col1 int, col2 int);

INSERT INTO analytics VALUES

(15, 3), (3, 1), (2, 1), (5, 3), (NULL, 2),

(3, 2), (4, 1), (6, 3), (8, 2), (NULL, 4);

D2.4 – Time Series Operators for MonetDB 17

3. MonetDB Window Function Extensions 3.2. Example Queries

SELECT PERCENT_RANK() OVER (ORDER BY col1) FROM analytics;

+--------------------+

| L4 |

+====================+

| 0 |

| 0 |

| 0.2222222222222222 |

| 0.3333333333333333 |

| 0.3333333333333333 |

| 0.5555555555555556 |

| 0.6666666666666666 |

| 0.7777777777777778 |

| 0.8888888888888888 |

| 1 |

+--------------------+

SELECT FIRST_VALUE(col1) OVER (PARTITION BY col2) FROM analytics;

+------+

| L4 |

+======+

| 3 |

| 3 |

| 3 |

| null |

| null |

| null |

| 15 |

| 15 |

| 15 |

| null |

+------+

SELECT COUNT(col1) OVER (ORDER BY col2 DESC RANGE UNBOUNDED PRECEDING) FROM analytics;

+------+

| L4 |

+======+

| 0 |

| 3 |

| 3 |

| 3 |

| 5 |

| 5 |

| 5 |

| 8 |

| 8 |

| 8 |

+------+

SELECT AVG(col1) OVER (ORDER BY col2 GROUPS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)

FROM analytics;

+------+

| L4 |

+======+

| 3 |

| 3 |

| 3 |

| 4 |

| 4 |

| 4 |

| 5.75 |

| 5.75 |

| 5.75 |

| 5.75 |

+------+

D2.4 – Time Series Operators for MonetDB 18

3. MonetDB Window Function Extensions 3.2. Example Queries

We have also implemented interval boundaries for time columns on RANGE frames.

CREATE TABLE timetable (col1 timestamp, col2 int);

INSERT INTO timetable VALUES

(’2017-01-01’, 3), (’2017-02-02’, 1), (’2017-03-03’, 1), (’2017-04-04’, 3),

(NULL, 2), (’2017-06-06’, 2), (’2017-07-07’, 1), (’2017-08-08’, 3),

(’2017-09-09’, 2), (NULL, 4);

SELECT SUM(col2) OVER (ORDER BY col1 RANGE BETWEEN

INTERVAL ’1’ MONTH PRECEDING AND INTERVAL ’3’ MONTH FOLLOWING)

FROM timetable;

+------+

| L4 |

+======+

| 6 |

| 6 |

| 5 |

| 5 |

| 5 |

| 5 |

| 6 |

| 6 |

| 5 |

| 2 |

+------+

New WINDOW Keyword. For convenience, we have added support for the WINDOW

keyword. If the same window specification is to be used multiple times in a SELECT

clause, one can define an alias for this window specification, so as to avoid repeating
the same window definition. Such aliases can be defined using the new WINDOW

keyword in a FROM clause. In the query below, the definitions of the aliases w1 and
w2 show how different aliases can be defined for different window specifications on
one table. The definition of the alias w3 shows that different aliases can be defined
for the same window specification. Finally, all aliases can be subsequently used in
the SELECT clause.
SELECT COUNT(*) OVER w1, PROD(col1) OVER w2, SUM(col1) OVER w1,

AVG(col2) OVER w2, MAX(col2) OVER w3

FROM analytics WINDOW

w1 AS (ROWS BETWEEN 5 PRECEDING AND 0 FOLLOWING),

w2 AS (RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING),

w3 AS (w2);

+------+--------+------+--------------------------+------+

| L4 | L10 | L14 | L20 | L24 |

+======+========+======+==========================+======+

| 1 | 259200 | 15 | 2.2 | 4 |

| 2 | 259200 | 18 | 2.2 | 4 |

| 3 | 259200 | 20 | 2.2 | 4 |

| 4 | 259200 | 25 | 2.2 | 4 |

| 5 | 259200 | 25 | 2.2 | 4 |

| 6 | 259200 | 28 | 2.2 | 4 |

| 6 | 259200 | 17 | 2.2 | 4 |

| 6 | 259200 | 20 | 2.2 | 4 |

| 6 | 259200 | 26 | 2.2 | 4 |

| 6 | 259200 | 21 | 2.2 | 4 |

+------+--------+------+--------------------------+------+

Partition Orders. Our previous partitioning implementation did not impose
order in the input. With the new implementation of window functions, partitioning
now imposes ascending order by default, thus pairing with the industry standard

D2.4 – Time Series Operators for MonetDB 19

3. MonetDB Window Function Extensions 3.2. Example Queries

implementation. If the same expression occurs in both PARTITION and ORDER clause,
then ORDER defines the input order:

CREATE TABLE ranktest (id INT, k STRING);

INSERT INTO ranktest VALUES (1061,’a’),(1062,’b’),(1062,’c’),(1061,’d’);

SELECT ROW_NUMBER() OVER (PARTITION BY id), id FROM ranktest;

-- Output before

+------+------+

| L4 | id |

+======+======+

| 1 | 1062 |

| 2 | 1062 |

| 1 | 1061 |

| 2 | 1061 |

+------+------+

-- Output now

+------+------+

| L4 | id |

+======+======+

| 1 | 1061 |

| 2 | 1061 |

| 1 | 1062 |

| 2 | 1062 |

+------+------+

Fashion sales moving average Moving average2 is an important calculation in
statistics. For example, it is often used in technical analysis of sales data. With the
SQL 2011 window functions, it is now much easier to computing statistic methods
like moving averages that explicitly address the values by their position in SQL3.

In this example, we show how to compute moving average for some Zalando sales
data [4]. First, we load the data set, which contains among others a gross amount

for each day:

sql>CREATE TABLE region1_orders (

more> region INT DEFAULT 1,

more> id INT,

more> no_items FLOAT,

more> no_orders FLOAT,

more> gross_amount FLOAT,

more> "date" DATE

more>);

operation successful

sql>COPY OFFSET 2 INTO

more> region1_orders

more> FROM ’<path-to>/ZALANDO_data_M3/region1_orders.csv’

more> (id, no_items, no_orders, gross_amount, "date")

more> DELIMITERS ’,’,’\n’ NULL AS ’’ BEST EFFORT;

729 affected rows

The query below computes moving averages of 7 preceding days for the
gross amount.

2https://en.wikipedia.org/wiki/Moving_average
3The relational model does not have the notion of order, so table records can only be addressed
by their combined distinct values. If two records happen to contain exactly the same values,
there is no way to distinguish them.

D2.4 – Time Series Operators for MonetDB 20

https://en.wikipedia.org/wiki/Moving_average

3. MonetDB Window Function Extensions 3.2. Example Queries

sql>SELECT "date", gross_amount, AVG(gross_amount) OVER (ORDER BY "date" ASC

more> RANGE BETWEEN INTERVAL ’7’ DAY PRECEDING AND INTERVAL ’0’ DAY FOLLOWING) AS ma1week

more> FROM region1_orders;

+------------+--------------------------+--------------------------+

| date | gross_amount | ma1week |

+============+==========================+==========================+

| 2013-03-02 | 0.913448169706 | 0.913448169706 |

| 2013-03-03 | 0.900760559146 | 0.907104364426 |

| 2013-03-04 | 0.696187810056 | 0.8367988463026667 |

| 2013-03-05 | 0.711312403182 | 0.8054272355225 |

...

| 2015-02-24 | 1.1476541021 | 1.34353897110375 |

| 2015-02-25 | 1.12662334926 | 1.33628887056875 |

| 2015-02-26 | 1.05794838226 | 1.3152827855675 |

| 2015-02-27 | 1.11077032663 | 1.3009447468287498 |

| 2015-02-28 | 1.04995952798 | 1.2978170778875 |

+------------+--------------------------+--------------------------+

729 tuples

The complete result set is best view in a plot as shown in Figure 3.1.

Figure 3.1: Seven days moving average of Zalando sales data gross amount.

D2.4 – Time Series Operators for MonetDB 21

4 Conclusions

In this document, we have presented two major MonetDB extension to facilitate
fashion time series data processing: RecovDB and SQL 2011 window functions.
For RecovDB, we have submitted a paper to ICDE 2019 to demonstrate its main
features; while the window functions will be released with the coming MonetDB
feature release in Q1/2019.

In the remainder of the FashionBrain project, we plan to continue working on both
topics:

• Extend the recovery algorithm of RecovDB to handle streaming data (this
work is led by UNIFR).

• Porting the RecovDB SQL Python UDF to MonetDB’s native C-UDF for
better performance (this is joint work of MDBS and UNIFR).

• Finish the development of the RecovDB demonstration (this is joint work of
MDBS and UNIFR).

• Hardening the window function implementation to be release ready (this work
is led by MDBS).

D2.4 – Time Series Operators for MonetDB 22

Bibliography

[1] Ines Arous, Mourad Khayati, Philippe Cudré-Mauroux, Ying Zhang, Martin
Kersten, and Svetlin Stalinlov. RecoveDB: accurate and efficient missing blocks
recovery for large time series. In Proceedings of the 35th IEEE International
Conference on Data Engineering (ICDE 2019), April 2019.

[2] Peter A. Boncz, Martin L. Kersten, and Stefan Manegold. Breaking the memory
wall in MonetDB. Commun. ACM, 51(12):77–85, 2008.

[3] Jose Cambronero, John Feser, Micah Smith, and Samuel Madden. Query
optimization for dynamic imputation. PVLDB, 10(11):1310–1321, 2017. URL
http://www.vldb.org/pvldb/vol10/p1310-feser.pdf.

[4] FashionBrain. Deliverable D.2.2, Requirement analysis document WP2, August
2017.

[5] Mourad Khayati, Michael H. Böhlen, and Johann Gamper. Memory-efficient
centroid decomposition for long time series. In IEEE 30th International
Conference on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31
- April 4, 2014, pages 100–111, April 2014. doi: 10.1109/ICDE.2014.6816643.
URL https://doi.org/10.1109/ICDE.2014.6816643.

[6] Carlos Ordonez and Sasi K. Pitchaimalai. One-pass data mining algorithms
in a DBMS with udfs. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2011, Athens, Greece, June
12-16, 2011, pages 1217–1220, 2011. doi: 10.1145/1989323.1989458. URL
http://doi.acm.org/10.1145/1989323.1989458.

[7] Irene Rodriguez-Lujan, Jordi Fonollosa, Alexander Vergara, Margie Homer, and
Ramon Huerta. On the calibration of sensor arrays for pattern recognition using
the minimal number of experiments. Chemometrics and Intelligent Laboratory
Systems, 130:123 – 134, 2014. ISSN 0169-7439.

[8] Feras Saad and Vikash K Mansinghka. A probabilistic programming approach
to probabilistic data analysis. In NIPS, pages 2011–2019, 2016.

[9] Jimeng Sun, Spiros Papadimitriou, and Christos Faloutsos. Online latent
variable detection in sensor networks. In Proceedings of the 21st International
Conference on Data Engineering, ICDE 2005, 5-8 April 2005, Tokyo, Japan,
pages 1126–1127, April 2005. doi: 10.1109/ICDE.2005.100.

[10] Kevin Wellenzohn, Michael H. Böhlen, Anton Dignös, Johann Gamper, and
Hannes Mitterer. Continuous imputation of missing values in streams of
pattern-determining time series. In Proceedings of the 20th International

D2.4 – Time Series Operators for MonetDB 23

http://www.vldb.org/pvldb/vol10/p1310-feser.pdf
https://doi.org/10.1109/ICDE.2014.6816643
http://doi.acm.org/10.1145/1989323.1989458

BIBLIOGRAPHY BIBLIOGRAPHY

Conference on Extending Database Technology, EDBT 2017, Venice, Italy,
March 21-24, 2017., pages 330–341, March 2017.

D2.4 – Time Series Operators for MonetDB 24

	List of Figures
	List of Tables
	List of Acronyms and Abbreviations
	1 Introduction
	1.1 Scope of this Deliverable

	2 Time Series Missing Blocks Recovery
	2.1 Design Considerations
	2.2 RecovDB Recovery Algorithm
	2.2.1 Centroid Decomposition (CD)
	2.2.2 Recovery Algorithm

	2.3 RecovDB Implementation
	2.4 RecovDB Evaluation
	2.5 RecovDB Web Interface
	2.5.1 Example Data Sets
	2.5.2 Use Cases

	2.6 Conclusions

	3 MonetDB Window Function Extensions
	3.1 Feature Extensions
	3.1.1 Window Analytic Functions
	3.1.2 Aggregate Functions
	3.1.3 Window Functions Frames

	3.2 Example Queries

	4 Conclusions
	Bibliography

