
Horizon 2020

Understanding Europe’s Fashion Data Universe

Data Integration Solution

Deliverable number: D2.3

Version 2.0

Funded by the European Union’s Horizon 2020 research and
innovation programme under Grant Agreement No. 732328

ii

Project Acronym: FashionBrain
Project Full Title: Understanding Europe’s Fashion Data Universe
Call: H2020-ICT-2016-1
Topic: ICT-14-2016-2017, Big Data PPP: Cross-sectorial and

cross-lingual data integration and experimentation
Project URL: https://fashionbrain-project.eu

Deliverable type Other (O)
Dissemination level Public (PU)
Contractual Delivery Date 31 December 2018
Resubmission Delivery Date 4 February 2019
Number of pages 40, the last one being no. 34
Authors Ying Zhang, Pedro E. S. Ferreira, Svetlin Stalinov,

Aris Koning, Martin Kersten - MDBS
Torsten Kilias, Alexander Löser - BEUTH
Roland Vollgraf - Zalando

Peer review Ines Arous, Mourad Khayati - UNIFR
Alan Akbik - Zalando

Change Log

Version Date Status Partner Remarks
0.1 14/11/2018 Draft MDBS
0.2 15/12/2018 Full Draft MDBS, BEUTH,

Zalando
1.0 20/12/2018 Final MDBS, BEUTH,

Zalando, UNIFR Rejected 30/01/2019
2.0 04/02/2019 Resumitted Final MDBS, BEUTH,

Zalando, UNIFR

Deliverable Description

D2.3 Data integration solution (M24). A MonetDB data integration solution for
modelling and storing i) the different available datasets from all partners, ii) the
taxonomy, iii) the extracted named entities and links. The deliverable will also
include the extension of MonetDB with JSON support to include the management
of semi-structured data. The proposed solution will be used in WP4, WP5, and
WP6.

https://fashionbrain-project.eu

Abstract

In this deliverable, we report the work we have done under the context of
T2.3 “infrastructures for scalable cross-domain data integration and management”
which has resulted in the design and implementation of the MonetDB-based
FashionBrain Integrated Architecture (FaBIAM) for storing, managing and
processing heterogeneous fashion data (i.e. structured relational and unstructured
text data).
First we present the architecture of FaBIAM. Then we highlight several main
components of FaBIAM. Finally, we show FaBIAM can be used to support fashion
time series data use case as defined in D1.2 [3].

iii

Table of Contents

List of Figures v

List of Tables v

List of Acronyms and Abbreviations vi

1. Introduction 1
1.1. Scope of this Deliverable . 2

2. FaBIAM 4
2.1. Architecture Overview . 4
2.2. JSON Data Processing . 6
2.3. Streaming Data and Continuous Query 8
2.4. Text Data Analysis with Machine Learning 15

3. FashionBrain Use Cases 19

4. Conclusions 24

Bibliography 25

A. Appendix: MonetDB/TensorFlow Examples 26
A.1. Basic Operations . 26
A.2. Word Embeddings . 30

iv

List of Figures

2.1. Architecture of the FashionBrain integrated architecture (FaBIAM). . 4
2.2. MonetDB server software implementation stack: query ⇒ parser ⇒

plan generator ⇒ optimiser ⇒ executor. Boxes with gray background
are components modified for streaming data and continuous query
processing. 9

2.3. Architecture of In-Database Machine Learning in MonetDB. 15

List of Tables

2.1. Supported functions on MonetDB native JSON data type. 6
2.2. Supported path expressions on MonetDB native JSON data type. . . 6

v

List of Acronyms and Abbreviations

ACID Atomicity, Consistency, Isolation and Durability
BigComp 2019 6th IEEE International Conference on Big Data and Smart

Computing
CD Centroid Decomposition
COLING 2018 27th International Conference on Computational Linguistics
CQE Continuous Query Engine
CSV Comma Separated Values
DBMS Database Management System
FaBIAM FashionBrain Integrated Architecture
ICDE 2019 35th IEEE International Conference on Data Engineering
IDEL In-Database Entity Linking
IoT Internet of Things
JSON JavaScript Object Notation
MAL MonetDB Assembly Language
NLP Natural Language Processing
OLAP Online Analytical Processing
RDBMS Relational Database Management System
SQL Structured Query Language
UDF User Defined Functions
UDP User Defined Procedure

vi

1. Introduction

The FashionBrain project targets at consolidating and extending existing European
technologies in the area of database management, data mining, machine learning,
image processing, information retrieval, and crowd sourcing to strengthen the
positions of European (fashion) retailers among their world-wide competitors.
For fashion retailers, the ability to efficiently extract, store, manage and analyse
information from heterogeneous data sources, including structured data (e.g.
product catalogues and sales information), unstructured data (e.g. twitter, blogs and
customer reviews), and binary (multimedia) data (e.g. YouTube and Instagram), is
business critical. Therefore, in work package WP2 “Semantic Data Integration for
Fashion Industry”, one of the main objectives is to

“Design and deploy novel big data infrastructure to support scalable
multi-source data federation, and implement efficient analysis
primitives at the core of the data management solution.”

This objective is addressed by task T2.3 “Infrastructures for scalable cross-domain
data integration and management”, which focus on the implementation of cross-
domain integration facilities to support advanced (fashion) text and time series
analysis.
The work we have done in the context of T2.3 is being reported now in two
deliverables both due in M24 (Dec2018). In the sibling deliverable D2.4 “Time
Series Operators for MonetDB”, we report the new time series analysis techniques
and operators we have added into the analytical Relational Database Management
System (RDBMS) MonetDB1.
In this deliverable, we detail the design and implementation of FaBIAM, a MonetDB-
based architecture for storing, managing and analysing of both structured and
unstructured data, which has a three layer structure:

• At the bottom, the data ingestion layer supports ingestion and storage of
both structured (i.e. Comma Separated Values (CSV)) and unstructured (i.e.
JavaScript Object Notation (JSON)) data.

• In the middle, the processing layer supports advanced Structured Query
Language (SQL) window functions, in-database machine learning and
continuous queries. These features have been added into the MonetDB kernel
in the context of T2.3.

1https://www.monetdb.org

D2.3 – Data Integration Solution 1

https://www.monetdb.org

1. Introduction 1.1. Scope of this Deliverable

• At the top, the analysis layer has integrated tools provided by FashionBrain
partners for advanced time series analysis (with partner UNIFR) and text data
processing (with partners BEUTH and Zalando).

1.1. Scope of this Deliverable

The design of FaBIAM has been guided by the business scenarios identified in D1.2
“Requirement analysis document”, in particular:

• Scenario 3: Brand Monitoring for Internal Stakeholders
– Challenge 7: Online Analytical Processing (OLAP) Queries over Text-

and Catalogue Data
• Scenario 4: Fashion Trends Analysis

– Challenge 8: Textual Time Trails
– Challenge 9: Time Series Analysis

In FaBIAM the following work with partners has been integrated:
• RecovDB [2]: an advanced time series missing value recovery system using

MonetDB and centroid decomposition [4]. This work is reported in details in
the sibling deliverable D2.4 “Time Series Operators for MonetDB” and has
been submitted to 35th IEEE International Conference on Data Engineering
(ICDE 2019). This work is in collaboration with partner UNIFR.

• In-Database Entity Linking (IDEL) [5]: an entity linking system for both
text data and relational records based on neural embeddings. This work was
reported in details in deliverables D4.1 “Report on text joins” and D4.2 “Demo
on text joins” and is to appear in 6th IEEE International Conference on Big
Data and Smart Computing (BigComp 2019). This work is in collaboration
with partner BEUTH.

• FLAIR[1]: a Natural Language Processing (NLP) library2 based on word
and document embeddings. This work was reported in details in deliverable
D6.2 “Entity linkage data model” and was published in 27th International
Conference on Computational Linguistics (COLING 2018). This work is in
collaboration with partner Zalando.

For the work reported in this deliverable, we have used all data sets that have
been provided by project partners for FashionBrain as described in deliverable D2.2
“Requirement analysis document WP2”.

The remainder of this deliverable is as follows. In Chapter 2, we describe the
architecture of FaBIAM. We first give an overview of the architecture in Section 2.1.
Then, we zoom in into several individual components that have not been covered
by other deliverables, including MonetDB’s support for JSON data as a native data

2https://github.com/zalandoresearch/flair

D2.3 – Data Integration Solution 2

https://github.com/zalandoresearch/flair

1. Introduction 1.1. Scope of this Deliverable

type (Section 2.2), streaming data and continuous query processing (Section 2.3),
and text data analysis with machine learning (Section 2.4). In Chapter 3, we present
the implementation of a fashion use case to demonstrate how FaBIAM can be used
to process, analyse and store a stream of reviews posted by Zalando customers.
Finally, in Chapter 4 we conclude with outlook for future work.

D2.3 – Data Integration Solution 3

2. FaBIAM

SQL UDFs

embedded

process

embedded

library

Continuous Query EngineSQL 2011 Window Functions

Named Entity Recognition Entity & Record Linkage

IDEL
Time Series Recovery

RecovDB

an
al

ys
is

 la
ye

r
pr

oc
es

si
ng

 la
ye

r
da

ta
 in

ge
st

io
n

la
ye

r

Figure 2.1: Architecture of the FashionBrain integrated architecture (FaBIAM).

2.1. Architecture Overview

Figure 2.1 shows an overview of FaBIAM. All components are integrated into the
kernel of MonetDB. The solid arrows indicate the components that can already
work together, while the dashed arrows indicating future integration. From bottom
to top, they are divided into three layers:

Data Ingestion Layer This layer at the bottom of the MonetDB kernel provides
various features for loading data into MonetDB. In the fashion world, there
are three major groups of data: structured (e.g. product catalogues and sales
information), unstructured (e.g. fashion blogs, customer reviews, social media
posts and news messages) and binary data (e.g. videos and pictures). A
prerequisite for the design of FaBIAM is that it must be able to store and
process both structured and unstructured data, while binary data can be
generally left as is. Therefore, next to CSV (the de facto standard data format

D2.3 – Data Integration Solution 4

2. FaBIAM 2.1. Architecture Overview

for structured data) MonetDB also support JSON (the de facto standard data
format for unstructured data) as a native data type. In Section 2.2, we will
detail how JSON data can be loaded into MonetDB and queried.

Processing Layer This layer in the middle of the MonetDB kernel provides various
features to facilitate query processing. In the context of the FashionBrain
project in general and WP2 in particular, we have introduced several major
extensions in this layer geared towards streaming and time series (fashion) data
processing by means of both traditional SQL queries, as well as using modern
machine learning technologies. This include i) major extensions to MonetDB’s
support for Window Function, which is detailed in the sibling deliverable D2.4
“Time Series Operators for MonetDB” ; ii) a Continuous Query Engine (CQE)
for streaming and Internet of Things (IoT) data, which will be detailed below in
Section 2.3; and iii) a tight integration with various machine learning libraries,
including the popular TensorFlow library, through SQL Python User Defined
Functions (UDF)s, which will be detailed below in Section 2.4.

Analysis Layer In this layer at the top of the MonetDB kernel, we have integrated
technologies of FashionBrain partners (under the collaborations of the
respective partner) to enrich MonetDB’s analytical features for (fashion) text
data and time series data:

• FLAIR [1] is a python library (provided by Zalando) for named entity
recognition. In Section 2.4, we will describe how one can use FLAIR from
within MonetDB through SQL Python UDF.

• IDEL [5] is also a python library (provided by BEUTH), but for linking
of already identified entities between text data and relational records,
and for records linkage of already identified entities in relational records.
The integration of IDEL in MonetDB was described in details in earlier
deliverables D4.1 “Report on text joins” and D4.2 “Demo on text joins”.

• RecovDB [2] is a MonetDB-based RDBMS for the recovery of blocks
of missing values in time series stored in MonetDB. The Centroid
Decomposition (CD)-based recovery algorithm (provided by UNIFR) is
implemented as SQL Python UDFs, but UNIFR and MDBS are working
together on porting it to MonetDB native C-UDFs. This work is detailed
in the sibling deliverable D2.4 “Time Series Operators for MonetDB”.

In summary, the design of the FaBIAM architecture covers the whole stack of data
loading, processing and analysis specially for fashion text and time series data.
Further in this chapter, we detail one component in each layer in a separate section,
i.e. JSON, continuous query processing and FLAIR integration. In Chapter 3, we
demonstrate how FaBIAM can be used to process, analyse and store a stream of
reviews posted by Zalando customers.

D2.3 – Data Integration Solution 5

2. FaBIAM 2.2. JSON Data Processing

JSON Function Description

json.filter(J, Pathexpr) Extracts the component from J that satisfied the Pathexpr.
json.filter(J, Number) Extracts a indexed component from J.
json.text(J, [Sep]) Glue together the values separated by Sep character (default space).
json.number(J) Turn a number, singleton array value, or singleton object tag into a double.
json.“integer”(J) Turn a number, singleton array value, or singleton object element into an integer.
json.isvalid(StringExpr) Checks the string for JSON compliance. Returns boolean.
json.isobject(StringExpr) Checks the string for JSON object compliance. Returns boolean.
json.isarray(StringExpr) Checks the string for JSON array compliance. Returns boolean.
json.length(J) Returns the number of top-level components of J.
json.keyarray(J) Returns a list of key tags for the top-level components of J.
json.valuearray(J) Returns a list of values for the top-level components of J.
json.filter(J, Pathexpr) Extracts the component from J that satisfied the Pathexpr.

Table 2.1: Supported functions on MonetDB native JSON data type.

JSON path expression Description

“$” The root object
“.” childname The child step operator
“..” childname Recursive child step
“*” Child name wildcard
“[” nr “]” Array element access
“[” * “]” Any array element access
E1 “,” E2 Union path expressions

Table 2.2: Supported path expressions on MonetDB native JSON data type.

2.2. JSON Data Processing

JSON1 is a lightweight data-interchange format. Since its initial introduction in
1999, it has quickly become the de facto standard format for data exchange, not
only for text data but also often for numerical data. In FashionBrain, sometimes
the whole data set is provided as a JSON file, such as the product examples of
Macys and GAP, while in other data sets, the data of some columns is encoded as
JSON objects. In this section, we describe two different ways to load JSON data
into MonetDB.

JSON as Native Data Type

In MonetDB one can declare an SQL column to be of the type JSON and load JSON
objects into the column. In the example below, we first create a table json_example
with a single column c1, and then insert three JSON objects into it:
$ mclient -d fb -H
Welcome to mclient, the MonetDB/SQL interactive terminal (unreleased)
Database: MonetDB v11.31.12 (unreleased), ’mapi:monetdb://Nyx.local:50000/fb’
...
sql>CREATE TABLE json_example(c1 JSON);
operation successful
sql>INSERT INTO json_example VALUES
more>(’{ "category": "reference",

1http://www.json.org

D2.3 – Data Integration Solution 6

http://www.json.org

2. FaBIAM 2.2. JSON Data Processing

more> "author": "Nigel Rees",
more> "title": "Sayings of the Century",
more> "price": 8.95
more>}’),
more>(’{ "category": "fiction",
more> "author": "Evelyn Waugh",
more> "title": "Sword of Honour",
more> "price": 12.99
more>}’),
more>(’{ "category": "novel",
more> "author": "Evelyn Waugh",
more> "title": "Brideshead Revisited",
more> "price": 13.60
more>}’);
3 affected rows

Subsequently, one can query the JSON objects using the built-in JSON functions
and path expressions. For example the following query turns the JSON objects into
a table with the proper data conversion:
sql>SELECT json.text(json.filter(c1, ’$.category’), ’,’) AS category,
more> json.text(json.filter(c1, ’$.author’), ’,’) AS author,
more> json.text(json.filter(c1, ’$.title’),’,’) AS book,
more> json.number(json.filter(c1, ’$.price’)) AS price
more> FROM json_example ;
+-----------+--------------+------------------------+--------------------------+
| category | author | book | price |
+===========+==============+========================+==========================+
reference	Nigel Rees	Sayings of the Century	8.95
fiction	Evelyn Waugh	Sword of Honour	12.99
novel	Evelyn Waugh	Brideshead Revisited	13.6
+-----------+--------------+------------------------+--------------------------+
3 tuples

The following query compute the total book sales price per author:
sql>SELECT json.text(json.filter(c1, ’$.author’), ’,’) AS author,
more> SUM(json.number(json.filter(c1, ’$.price’))) AS total_price
more> FROM json_example GROUP BY author;
+--------------+--------------------------+
| author | total_price |
+==============+==========================+
| Nigel Rees | 8.95 |
| Evelyn Waugh | 26.59 |
+--------------+--------------------------+
2 tuples

Table 2.1 and Table 2.2 show the built-in functions and path expressions supported
by MonetDB for its native JSON data type.

JSON into SQL Tables

Although JSON was originally introduced to encode unstructured data, in reality,
JSON data often has a fairly clear structure, for instance, when used to encode
persons, books, fashion items information. Therefore, MonetDB provides a
second way to process and load JSON data directly into SQL tables using the
MonetDB/Python loader functions2.

2https://www.monetdb.org/blog/monetdbpython-loader-functions

D2.3 – Data Integration Solution 7

https://www.monetdb.org/blog/monetdbpython-loader-functions

2. FaBIAM 2.3. Streaming Data and Continuous Query

Assume the information of authors and books above is stored in a file “books.json”:
$ cat books.json
{ "category": ["reference", "fiction", "novel"],
"author": ["Nigel Rees", "Evelyn Waugh", "Evelyn Waugh"],
"title": ["Sayings of the Century", "Sword of Honour", "Brideshead Revisited"],
"price": [8.95, 12.99, 13.60]

}

We can create a simple json_loader function to process the JSON file and load its
contents into an SQL table:
sql>CREATE LOADER json_loader(filename STRING) LANGUAGE python {
more> import json
more> f = open(filename)
more> _emit.emit(json.load(f))
more> f.close
more>};
operation successful
sql>CREATE TABLE json_books FROM loader json_loader(’<path-to>/books.json’);
operation successful
sql>SELECT * FROM json_books;
+-----------+--------------+------------------------+--------------------------+
| category | author | title | price |
+===========+==============+========================+==========================+
reference	Nigel Rees	Sayings of the Century	8.95
fiction	Evelyn Waugh	Sword of Honour	12.99
novel	Evelyn Waugh	Brideshead Revisited	13.6
+-----------+--------------+------------------------+--------------------------+
3 tuples

Now we can freely query the data using any SQL features supported by MonetDB,
e.g.:
sql>SELECT author, SUM(price) FROM json_books GROUP BY author;
+--------------+--------------------------+
| author | L3 |
+==============+==========================+
| Nigel Rees | 8.95 |
| Evelyn Waugh | 26.59 |
+--------------+--------------------------+
2 tuples

2.3. Streaming Data and Continuous Query

Time series data are series of values obtained at successive times with regular or
irregular intervals between them. Many fashion data, such as customer reviews,
fashion blogs, social media messages and click streams, can be regarded as time series
(mostly) with irregular time intervals. Taking customer reviews as an example, the
raw data can be simply modelled as one long series of <ts TIMESTAMP, review
STRING> pairs3. By analysing this type of data, which we refer to as fashion time
series, fashion retailers would be able to gain valuable insights of not only trends,
moods and opinions of potential customers at a given moment in time, but also the

3Of course, each pair needs to be annotated with meta information, such as the identify of the
customer and the reviewed product.

D2.3 – Data Integration Solution 8

2. FaBIAM 2.3. Streaming Data and Continuous Query

SQL Parser

SQL CompilerSyntax Tree

MAL Optimisers

MAL Interpreter

MAL
Programme

Relational
AlgebraMAL Generator

GDK Kernel

Client

SQL Query

Resultset

SQL Catalog

Legend

Functional Component
Data Structure

BATsBATsBATsBATs

Figure 2.2: MonetDB server software implementation stack: query ⇒ parser ⇒
plan generator ⇒ optimiser ⇒ executor. Boxes with gray background are
components modified for streaming data and continuous query processing.

changes in trends, moods and opinions of a period of time [3].

Fashion time series is usually produced as streams of data. Hence, supporting
fashion time series does not only require a system to be able to process streaming
data but also persistent relational data, because information from customer reviews
and fashion blogs typically need to be linked to the product catalogues and sales
information which is generally stored in a relational database. Therefore, we have
extended MonetDB with the notion of STREAM TABLE and a continuous query
scheduler, so that we can also benefit from the 25+ years research and engineering
work on optimising data processing in MonetDB for fashion time series streaming
data processing.

D2.3 – Data Integration Solution 9

2. FaBIAM 2.3. Streaming Data and Continuous Query

MonetDB Implementation Architecture

Figure 2.2 shows the software implementation stack of a MonetDB database server.
The boxes with gray background are components that have been modified or
extended to support the storage and management of streaming data, and the
processing of continuous queries.
At the SQL level, all components, including the parser, syntax tree, compiler and
catalog, have been extended to support the new language syntax for streaming tables
and continuous queries.
The MonetDB Assembly Language (MAL) is a MonetDB internal language in which
the physical query execution plans are expressed4. At the MAL level, all components
have been extended to support the new language features, as well as a new MAL
optimiser, called continuous query scheduler, who is in charge of the administration
and invocation of continuous queries.
Finally, at the database execution kernel level (i.e. the GDK kernel), the transaction
manager has been modified to use a much lighter transaction scheme for streaming
tables and continuous queries, because streaming tables only contain transient data
to which the strict database Atomicity, Consistency, Isolation and Durability (ACID)
properties do not apply.

Streaming Tables

Data delivered or generated in streaming applications often require immediate
processing. In most cases, the raw data need not end-up in the persistent store
of a database. Instead, it is first refined and aggregated. Moreover, modern message
brokers often manage the persistency of the raw data in a distributed and reliable
fashion. In case of failures, they already provide methods to go back in time to
start reprocessing. Redoing this work as part of a database transaction would be
unnecessary and a potential performance drain.
This leaves us with the notion of streaming tables which are common in most
streaming databases. They are light versions of normal relational tables, often solely
kept in memory and not subjected to the transaction management. They are the
end-points to deliver the streaming events. The following SQL syntax specifies how
a streaming table can be created in MonetDB:

CREATE STREAM TABLE tname (... columns ...)
[SET [WINDOW positive_number] [STRIDE positive_number]];

The column definitions follow the regular definition of persistent tables. Primary
Keys and Foreign Key constraints are ignored as a reaction to their violation would
be ill-defined in case of a streaming table.

4https://www.monetdb.org/Documentation/Manuals/MonetDB/Architecture

D2.3 – Data Integration Solution 10

https://www.monetdb.org/Documentation/Manuals/MonetDB/Architecture

2. FaBIAM 2.3. Streaming Data and Continuous Query

The WINDOW property determines when a continuous query that has been defined
on this table should be triggered. When set, the WINDOW parameter denotes the
minimal number of tuples in the streaming table to trigger a continuous query on
it. If not provided (default), then any continuous query using this stream table will
be triggered by an interval timer instead.
The STRIDE property determines what to do with tuples that have been consumed by
a continuous query. When set, the STRIDE parameter denotes the number of tuples
to be deleted from this stream table at the end of a continuous query invocation.
The default action is to remove all tuples seen in the query invocation, otherwise the
oldest N tuples are removed. Setting N to zero will keep all tuples until explicitly
deletion by a continuous query. The STRIDE size cannot be larger than the size of
the window to avoid events received but never processed. The parameters can be
changed later with the following SQL commands:
ALTER STREAM TABLE tname SET WINDOW positive_number;
ALTER STREAM TABLE tname SET STRIDE positive_number;

Continuous Queries

The semantics of continuous queries are encapsulated into ordinary SQL UDF and
User Defined Procedure (UDP). They only differ in the way they are called, and
they only use STREAM TABLEs as input/output. Given an existing SQL UDF, it can
be registered at the continuous query scheduler using the command:
START CONTINUOUS { PROCEDURE | FUNCTION } fname ‘(’ arguments ‘)’
[WITH [HEARTBEAT positive_number] [CLOCK literal] [CYCLES positive_number]] [AS tagname];

The scheduler is bases on a Petri-net model5, which activates the execution of a
continuous UDF/UDP when all its input triggers are satisfied.
The HEARTBEAT parameter indicates the number of milliseconds between calls to the
continuous query. If not set (default), the streaming tables used in the UDF/UDP
will be scanned making it a tuple-based continuous query instead. It is not possible
to set both HEARTBEAT and a WINDOW parameters at the same time, i.e. only one of the
temporal and spatial conditions may be set. If neither is set, then the continuous
query will be triggered in each Petri-net cycle. The CYCLES parameter tells the
number of times the continuous query will be run before being removed by the
Petri-net. If not indicated (default), the continuous query will run forever.
The CLOCK parameter specifies the wall-clock time for the continuous query to start,
otherwise it will start immediately upon registration.
The literal can be a timestamp (e.g. timestamp ‘2017-08-29 15:05:40’) which
sets the continuous query to start at that point, a date (e.g. date ‘2017-08-29’)
on which the continuous query will start at midnight, a time value (e.g. time

5https://en.wikipedia.org/wiki/Petri_net

D2.3 – Data Integration Solution 11

https://en.wikipedia.org/wiki/Petri_net

2. FaBIAM 2.3. Streaming Data and Continuous Query

‘15:05:40’) meaning that the continuous query will start today at that time, or
simply a UNIX timestamp integer with millisecond precision.
The tagname parameter is used to identify a continuous query. In this way, an
SQL UDF/UDP with different arguments can be registered as different continuous
queries. If a tagname is not provided, then the function/procedure name will be
used instead.

After having registered a continuous query, it is possible to pause, resume or stop
it. Their syntax is as follows:
-- Stop and remove a continuous query from the Petri-net.
STOP CONTINUOUS tagname;

-- Pause a continuous query from the Petri-net but do not remove it.
PAUSE CONTINUOUS tagname;

-- Resume a paused continuous query. If the HEARTBEAT and CYCLES parameters are not provided
-- (default), then the previous registered values will be used.
RESUME CONTINUOUS tagname [WITH [HEARTBEAT positive_number] [CLOCK literal] [CYCLES positive_number]]

The following SQL commands apply to all:
-- Stop and remove all continuous queries from the Petri-net.
STOP ALL CONTINUOUS;

-- Pause all continuous queries in the Petri-net.
PAUSE ALL CONTINUOUS

-- Resume all continuous queries in the Petri-net with the previous HEARTBEAT.
RESUME ALL CONTINUOUS and CYCLES values.

During the first iteration of a continuous function, a streaming table is created under
the cquery schema to store the outputs of the function during its lifetime in the
scheduler. This streaming table will be dropped once the continuous function is
deregistered from the scheduler or the MonetDB server restarts.
Several implementation choices should be noted:

• All continuous queries are stopped once the MonetDB server shuts down. The
user must start the continuous queries manually at restart of the server.

• Streaming tables are volatile for better performance under large workloads.
This means that upon restart of the database server their data is lost.

• A streaming table cannot be dropped while there is a continuous query using
it. The same condition holds for registered UDFs.

• The SQL catalog properties of a streaming table including columns cannot be
altered unlike regular SQL tables. Users must drop the table and recreate it
with the desired changes.

• The current scheduler implementation is agnostic of transaction management.
This means that if a continuous query was started, paused, resumed or stopped
during a rollbacked transaction, the changes are not reverted.

D2.3 – Data Integration Solution 12

2. FaBIAM 2.3. Streaming Data and Continuous Query

• If an error happens during a single execution, the continuous query gets
paused automatically. The error can be checked with a cquery.status()
or cquery.log() call.

Moving Average Example

Moving average6 is an important calculation in statistics. For example, it is
often used in technical analysis of financial data, such as stock prices, returns or
trading volumes. It is also used in economics to examine gross domestic product,
employment or other macroeconomic time series.
Although the concept of moving average is fairly simply, it is exceptionally difficult
to express this calculation in vanilla SQL queries, because e.g. the relational data
model does not have the notion of order. So, computing moving average using vanilla
SQL often results in complex queries with many expensive self-joins which end up
in bad performance.
However, when a Database Management System (DBMS) is extended with features
to support streaming data and continuous queries, computing statistic functions
such as moving average becomes simple. The queries below show how this can be
done in MonetDB.
First, we create a streaming table inputStream to temporarily store a stream of
integers. We also specify that continuous queries on this table should be triggered
whenever at least four tuples have been inserted into the table, i.e. WINDOW 4; and
the first two tuples should be deleted after each invocation of a continuous query,
i.e. In this way, we create a window of size 4 and it will be advanced 2 positions at
a time. STRIDE 2.
sql>CREATE STREAM TABLE inputStream (val INT) SET WINDOW 4 STRIDE 2;
operation successful

Then, we create an ordinary SQL UDF to compute the average of all values currently
in inputStream. And we immediately register this function at the continuous query
scheduler for execution in the background (i.e. START CONTINUOUS FUNCTION).
sql>-- calculate the average value of the window during execution
sql>CREATE FUNCTION calculateAverage() RETURNS REAL BEGIN
more> RETURN SELECT AVG(val) as calc FROM inputStream;
more>END;
operation successful
sql>START CONTINUOUS FUNCTION calculateAverage() AS calcavg;
operation successful

Now we can trigger the work of the continuous query by simply adding the sufficient
amount of values into the streaming table inputStream:
sql>INSERT INTO inputStream VALUES (33), (29), (30), (32);
4 affected rows

6https://en.wikipedia.org/wiki/Moving_average

D2.3 – Data Integration Solution 13

https://en.wikipedia.org/wiki/Moving_average

2. FaBIAM 2.3. Streaming Data and Continuous Query

Because the continuous query schedule is constantly running in the background, after
the INSERT query above, the scheduler will automatically trigger the execution of
the continuous query calcavg. We can check the effect of this both in the streaming
table inputStream and in the temporary table that holds the output of calcavg:
sql>-- The first 2 tuples should have been deleted
sql>SELECT * FROM inputStream;
+------+
| val |
+======+
| 30 |
| 32 |
+------+
2 tuples

sql>SELECT result FROM cquery.calcavg; -- The CQ has been performed once
+-----------------+
| result |
+=================+
| 31 |
+-----------------+
1 tuple

Next, we insert one new tuple into inputStream, which should not trigger an
execution of calcavg. So, inputStream contains three tuples, and cquery.calcavg
still contains the one result from the previous execution:
sql>INSERT INTO inputStream VALUES (42);
1 affected row
sql>SELECT * FROM inputStream;
+------+
| val |
+======+
| 30 |
| 32 |
| 42 |
+------+
3 tuples
sql>SELECT result FROM cquery.calcavg; --The CQ was not performed again yet
+-----------------+
| result |
+=================+
| 31 |
+-----------------+
1 tuple

Adding one more tuple into inputStream will make it contain four tuples again,
which triggers the second execution of calcavg. Examining the contents of
inputStream again shows two remaining tuples7, while cquery.calcavg now
contains two averages:
sql>INSERT INTO inputStream VALUES (24);
1 affected row
sql>SELECT * FROM inputStream;

7Actually, there is a slight delay between a streaming table get sufficient number of tuples inserted
and the corresponding continuous query gets executed. So, if one executes the SELECT query
immediately after the INSERT query (e.g. “INSERT INTO inputStream VALUES (24); SELECT
* FROM inputStream;”, the SELECT query might still return four tuples.

D2.3 – Data Integration Solution 14

2. FaBIAM 2.4. Text Data Analysis with Machine Learning

+------+
| val |
+======+
| 42 |
| 24 |
+------+
2 tuples
sql>SELECT result FROM cquery.calcavg; --The query was performed again
+-----------------+
| result |
+=================+
| 31 |
| 32 |
+-----------------+
2 tuples

The query will continue running in the background until it is manually stopped
(using STOP CONTINUOUS calcavg;) or the server shuts down.

2.4. Text Data Analysis with Machine Learning

SQL UDFs

embedded process

embedded libraryNamed Entity Recognition

Entity & Record Linkage

IDEL

SQL engine

NumPy arrays
• Zero data conversion cost
• Zero data transfer cost

Figure 2.3: Architecture of In-Database Machine Learning in MonetDB.

Figure 2.3 shows the architecture of in-database machine learning in MonetDB.
In the remainder of this section, we describe in details how the integration of
MonetDB/FLAIR is done. The integration of MonetDB/TensorFlow is done in
a similar way, so the examples are included in Appendix A, which consist of some
basic (matrix) operations and the Word2Vec model.

D2.3 – Data Integration Solution 15

2. FaBIAM 2.4. Text Data Analysis with Machine Learning

MonetDB/FLAIR Examples

The function flair() below shows the most straightforward way to integrate FLAIR
into MonetDB. It simply wraps an SQL CREATE FUNCTION definition around the
Python code from the FLAIR “Example Usage”8, so that one can apply FLAIR on
the input STRING s and receive a tagged string as the result:
CREATE FUNCTION flair (s STRING) RETURNS STRING LANGUAGE python {
from flair.data import Sentence
from flair.models import SequenceTagger

Make a sentence object from the input string
sentence = Sentence(s, use_tokenizer=True)
load the NER tagger
tagger = SequenceTagger.load(‘ner’)
run NER over sentence
tagger.predict(sentence)
return sentence.to_tagged_string()

};

The function flair_bulk() shows how we can leverage MonetDB’s bulk execution
model9 to apply FLAIR on multiple sentences in one go. This also shows how the
use case of “Tagging a List of Sentences”10 can be translated into MonetDB.
Although the input parameter s is still declared as a single STRING, at the runtime,
MonetDB actually passes a NumPy array of strings to this function. So, unlike the
single-string-input function flair() above, the implementation of flair_bulk() is
adjusted in such a way that it can handle an array of strings and also returns an
array of tagged strings.
CREATE FUNCTION flair_bulk (s STRING) RETURNS STRING
LANGUAGE python
{
from flair.data import Sentence
from flair.models import SequenceTagger

Make sentence objects from the input strings
sentences = [Sentence(sent, use_tokenizer=True) for sent in s]
load the NER tagger
tagger = SequenceTagger.load(‘ner’)
run NER over sentences
tagger.predict(sentences)
return [sent.to_tagged_string() for sent in sentences]

};

The function flair_tbl() is similar to flair_bulk() in the sense that it also
operates on an array of strings in one go. However, instead of returning an array of
tagged strings, it returns a table with a single column, in which the array of tagged
strings are stored. This is a so-called “table returning function”.

8https://github.com/zalandoresearch/flair
9https://www.monetdb.org/Documentation/Manuals/MonetDB/Architecture/
ExecutionModel

10https://github.com/zalandoresearch/flair/blob/master/resources/docs/TUTORIAL_
TAGGING.md

D2.3 – Data Integration Solution 16

https://github.com/zalandoresearch/flair
https://www.monetdb.org/Documentation/Manuals/MonetDB/Architecture/ExecutionModel
https://www.monetdb.org/Documentation/Manuals/MonetDB/Architecture/ExecutionModel
https://github.com/zalandoresearch/flair/blob/master/resources/docs/TUTORIAL_TAGGING.md
https://github.com/zalandoresearch/flair/blob/master/resources/docs/TUTORIAL_TAGGING.md

2. FaBIAM 2.4. Text Data Analysis with Machine Learning

CREATE FUNCTION flair_tbl (s STRING) RETURNS TABLE(ss STRING)
LANGUAGE python
{
from flair.data import Sentence
from flair.models import SequenceTagger

Make sentence objects from the input strings
sentences = [Sentence(sent, use_tokenizer=True) for sent in s]
load the NER tagger
tagger = SequenceTagger.load(’ner’)
run NER over sentences
tagger.predict(sentences)
return [sent.to_tagged_string() for sent in sentences]

};

Once the SQL Python functions have been created, we can call them to use FLAIR
from within MonetDB. In the examples below, the sentences were taken from the
FLAIR “Tutorial”11.
In the following SELECT query, the function flair() is executed seven times, each
time to tag one string.
sql>SELECT
more> flair (’I love Berlin.’),
more> flair (’The grass is green .’),
more> flair (’France is the current world cup winner.’),
more> flair (’George Washington went to Washington.’),
more> flair (’George Washington ging nach Washington.’),
more> flair (’George returned to Berlin to return his hat.’),
more> flair (’He had a look at different hats.’);
+-------------+-------------+-------------+-------------+-------------+-------------+-------------+
| L2 | L4 | L6 | L10 | L12 | L14 | L16 |
+=============+=============+=============+=============+=============+=============+=============+
| I love Berl | The grass i | France <S-L | George <B-P | George <B-P | George <S-P | He had a lo |
: in <S-LOC> : s green . : OC> is the : ER> Washing : ER> Washing : ER> returne : ok at diffe :
: . : : current w...> ton <E-PE...> ton <E-PE...> d to Berl...> rent hats . :
+-------------+-------------+-------------+-------------+-------------+-------------+-------------+
1 tuple !4 fields truncated!
clk: 16.165 sec

In the queries below, we first store the sentences in a table in MonetDB, then in
the two SELECT queries, we first retrieve the sentences from the SQL, before passing
them to flair_bulk() and flair_tbl(), respectively. In those queries, the UDFs
flair_bulk() and flair_tbl() are each executed only once to tag all sentences.
The effect of these bulk executions is clear to see in their execution times. Compared
to the above SELECT query with seven calls to flair(), the bulk versions are ~5
times faster.
sql>CREATE TABLE sentences (s STRING);
CREATE TABLE: name ’sentences’ already in use
sql>INSERT INTO sentences VALUES
more> (’I love Berlin.’),
more> (’The grass is green .’),
more> (’France is the current world cup winner.’),
more> (’George Washington went to Washington.’),
more> (’George Washington ging nach Washington.’),
more> (’George returned to Berlin to return his hat.’),

11https://github.com/zalandoresearch/flair

D2.3 – Data Integration Solution 17

https://github.com/zalandoresearch/flair

2. FaBIAM 2.4. Text Data Analysis with Machine Learning

more> (’He had a look at different hats.’);
7 affected rows
clk: 1.856 ms
sql>SELECT flair_bulk(s) FROM sentences;
+--+
| L2 |
+==+
| I love Berlin <S-LOC> . |
| The grass is green . |
| France <S-LOC> is the current world cup winner . |
| George <B-PER> Washington <E-PER> went to Washington <S-LOC> . |
| George <B-PER> Washington <E-PER> ging nach Washington <S-PER> . |
| George <S-PER> returned to Berlin <S-LOC> to return his hat . |
| He had a look at different hats . |
+--+
7 tuples
clk: 3.004 sec

sql>SELECT * FROM flair_tbl((SELECT s FROM sentences));
+--+
| ss |
+==+
| I love Berlin <S-LOC> . |
| The grass is green . |
| France <S-LOC> is the current world cup winner . |
| George <B-PER> Washington <E-PER> went to Washington <S-LOC> . |
| George <B-LOC> Washington <E-LOC> ging nach Washington <S-PER> . |
| George <S-PER> returned to Berlin <S-LOC> to return his hat . |
| He had a look at different hats . |
+--+
7 tuples
clk: 3.018 sec

D2.3 – Data Integration Solution 18

3. FashionBrain Use Cases

In this chapter, we show with a running example how continuous query processing
(Section 2.3) and FLAIR (embedded as SQL Python UDFs, see Section 2.4) can
be combined to continuously analyse incoming stream of fashion text. This is an
implementation of the business scenario 4 “Fashion Time Series Analysis” defined
in deliverable D1.2 “Requirement analysis document”.

Step 1: create the core UDF for text analysis. The function flair_entity_tags()
below takes a column of strings (i.e. s STRING) together with the corresponding
ID of those strings (i.e. id INT) as its input. It uses FLAIR’s “ner” model to tag
all review strings. The tagging results are extracted into a table with five columns
as the function’s return value: id is the ID of the original string, entity is the
identified entity, tag is the type assigned to this entity (i.e. what type of entity is
it), and start_pos and end_pos are respectively the start and end positions of this
entity in the original string, since an entity can contain multiple words. The value
of a tag can be LOC for location, PER for person, ORG for organisation and MISC for
miscellaneous.
$ mclient -d fb -H -t clock
Welcome to mclient, the MonetDB/SQL interactive terminal (unreleased)
Database: MonetDB v11.32.0 (hg id: 181dee462c5b), ’mapi:monetdb://dhcp-51.eduroam.cwi.nl:50000/fb’
Type \q to quit, \? for a list of available commands
auto commit mode: on
sql>CREATE FUNCTION flair_entity_tags (id INT, s STRING)
more>RETURNS TABLE(id INT, entity STRING, tag STRING, start_pos INT, end_pos INT)
more>LANGUAGE python
more>{
more> from flair.data import Sentence
more> from flair.models import SequenceTagger
more> import numpy
more>
more> # Make sentence objects from the input strings
more> sentences = [Sentence(sent, use_tokenizer=True) for sent in s]
more> # load the NER tagger
more> tagger = SequenceTagger.load(’ner’)
more> # run NER over sentences
more> tagger.predict(sentences)
more>
more> ids = []
more> entities = []
more> tags = []
more> start_poss = []
more> end_poss = []
more>
more> for idx,sent in numpy.ndenumerate(sentences):
more> for e in sent.get_spans(’ner’):
more> ids.append(id[idx[0]])
more> entities.append(e.text)
more> tags.append(e.tag)
more> start_poss.append(e.start_pos)
more> end_poss.append(e.end_pos)

D2.3 – Data Integration Solution 19

3. FashionBrain Use Cases

more>
more> return [ids, entities, tags, start_poss, end_poss]
more>};
operation successful

Step 2: prepare data. For this use case, we have used the product reviews data set
provided by Zalando as one of the M3 data sets. This data set (called “zalando-
reviews-FB-release”) contains reviews left by customers on the Zalando web page.
Users who have purchased a product may leave a textual review, typically describing
and/or rating the product. Each record in “zalando-reviews-FB-release” contains
five fields:

• id: a unique identifier of this record (SQL data type: INTEGER)
• title: title of this review, as given by the customer writing this review (data

type: STRING)
• text: customer review as plain text (SQL data type: STRING)
• sku: product SKU, used to identify the product (SQL data type: STRING)
• language_code: two-letter code identifying the language used in this review

(SQL data type: CHAR(2))
Since in this use case we are going to apply FLAIR to recognise the entities
mentioned in the customer reviews, we create the following STREAM TABLE to
temporarily store only the id and text of a customer review. The WINDOW size is
set to 4, i.e. whenever at least four records have been inserted into review_stream,
the continuous query defined on this table will be automatically executed. We do
not modify the default value of STRIDE, hence the records in review_stream will
be immediately deleted once they have been consumed by a continuous query.
sql>CREATE STREAM TABLE review_stream (id INT, review STRING) SET WINDOW 4;
operation successful

Step 3: create and start continuous query. The function tagreviews()
below is a wrapper of the continuous query we want to execute. It applies
flair_entity_tags() on all reviews currently in review_stream and returns the
id, entity and tag information (since we are not interested in the positions of
the entities right now). After the execution of the statement START CONTINUOUS
FUNCTION, targreviews() is registered at the continuous query scheduler as a
continuous function under the name tagged_reviews and waiting for a trigger to
be executed.
sql>CREATE FUNCTION tagreviews () RETURNS TABLE (id INT, entity STRING, tag STRING)
more>BEGIN
more> RETURN SELECT id, entity, tag FROM flair_entity_tags(
more> (SELECT id, review FROM review_stream));
more>END;
operation successful
sql>START CONTINUOUS FUNCTION tagreviews() AS tagged_reviews;
operation successful

D2.3 – Data Integration Solution 20

3. FashionBrain Use Cases

Step 4: inserting data to trigger the continuous query. Here we use the reviews
written in English. By inserting the reviews in small batches one at a time, we
mimic the real-world situation in which customer reviews are posted in the streaming
fashion.
In the queries below, we first insert two records. Since there are not enough
records in review_stream, the continuous query tagged_reviews() is not triggered.
We can check this by looking into cquery.tagged_reviews (the temporary table
that has been automatically created to store the results of each invocation of
tagged_reviews()) and review_stream. As expected, cquery.tagged_reviews
is empty, while review_stream contains the two newly records.
sql>INSERT INTO review_stream VALUES
more> (1862,’My first order with Zalando and so far everything has gone well. I\’ll be back.
more> The shoes, met my expectations despite a little tightness at first - which is normal,
more> I suppose . ’),
more> (1893,’Great quality and the best design by Boxfresh! After being really disappointed
more> by the quality of Pointers, I have decided that Boxfresh are the shoe brand for me.
more> Only drawback: they are really hot and sweaty... so really better for the winter
more> (but not with the white sole!)’);
2 affected rows
sql>SELECT * FROM cquery.tagged_reviews;
+----+--------+-----+
| id | entity | tag |
+====+========+=====+
+----+--------+-----+
0 tuples
sql>SELECT * FROM review_stream;
+------+---+
| id | review |
+======+===+
| 1862 | My first order with Zalando and so far everything has gone well. I’ll be ba |
: : ck. The shoes, met my expectations despite a little tightness at first :
: : - which is normal, I suppose . :
| 1893 | Great quality and the best design by Boxfresh! After being really disappoin |
: : ted by the quality of Pointers, I have decided that Boxfresh are the :
: : shoe brand for me. Only drawback: they are really hot and sweaty... so really :
: : better for the winter (but not with the white sole!) :
+------+---+
2 tuples

In the queries below, we insert two more records. Now that there are four records
in review_stream, the continuous query scheduler will automatically start the
execution of tagged_reviews after the INSERT INTO query. Let us wait for a while
for tagged_reviews to finish...
sql>INSERT INTO review_stream VALUES
more>(1905,’Boxfresh...always great’),
more>(1906,’I am very happy with the shoes and with Zalando\’s service’);
2 affected rows
sql>-- wait some time for the CQ tagged_review to finish...

If we now check the tables again. The table cquery.tagged_reviews now contains
the output of the continuous query tagged_reviews, while review_stream is empty
(because the records are automatically deleted after having been consumed by a
continuous query):
sql>SELECT * FROM cquery.tagged_reviews;

D2.3 – Data Integration Solution 21

3. FashionBrain Use Cases

+------+----------+------+
| id | entity | tag |
+======+==========+======+
1862	Zalando	PER
1893	Boxfresh	PER
1893	Boxfresh	ORG
1905	Boxfresh	PER
1906	Zalando	PER
+------+----------+------+		
5 tuples		
sql>SELECT * FROM review_stream;		
+------+--------+		
id	review	
+======+========+
+------+--------+
2 tuples

Let us insert another batch of reviews. This time we immediately insert four records,
which should trigger an invocation of tagged_reviews.
sql>INSERT INTO review_stream VALUES
more> (1919,’A quality Boxfresh casual shoe / trainer. Slightly larger fit. Thin & very
more> uncomfortable sole. \r\n\r\nThe second day I wore these, I did a fair bit of walking
more> and paid for it with some almighty blisters! I now have some inner soles in them and
more> all is well again. So I would definately recommend buying some inner soles to fit
more> these when purchasing.’),
more> (2591,’These are lovely boots, very comfy (especially because you can adjust the width and
more> leg fitting using the lace up front) and warm but not too warm. I can\’t really
more> comment on the quality because I\’ve only had them a few days, but they seem well made.
more> However, they are huge! I\’m usually a 7.5 and have worn size 7 Skechers before, but
more> I ended up with a size 6 in these boots as the 7s were so long I would have been
more> tripping over them.’),
more> (2906,’In my opinion Iso-Parcour make the best winter boots money can buy. The neoprene
more> lining insulates the feet against extreme cold (- 20!!!) You only need to wear thin
more> stockings or socks - that way you feel as if you are walking barefoot through the snow!
more> Long walks in snow are no problem with these boots. Two small criticisms: the price
more> is really steep and you can really only wear these boots in minus temps. At + 10 these
more> boots are far too heavy and hot.’),
more> (3550,’The shoes look just like the pictures on the online shop, which I was very happy
more> about!! My size fit perfectly and after a few days of wearing them in they were very
more> comfortable. The only thing that is a shame is that the shoes are "Made in India",
more> despite being marketed as a traditional English brand. For this price, I would expect
more> better.’);
4 affected rows

If we again wait for a while before checking the results, we can now see that
more results have been added to cquery.tagged_reviews, while review_stream
is emptied again:
sql>SELECT * FROM cquery.tagged_reviews;
+------+---------------+------+
| id | entity | tag |
+======+===============+======+
1862	Zalando	PER
1893	Boxfresh	MISC
1893	Pointers	MISC
1893	Boxfresh	ORG
1905	Boxfresh	PER
1906	Zalando	PER
2591	Skechers	MISC
2906	Iso-Parcour	ORG
3550	Made in India	MISC
3550	English	MISC
+------+---------------+------+

D2.3 – Data Integration Solution 22

3. FashionBrain Use Cases

10 tuples
sql>SELECT * FROM review_stream;
+----+--------+
| id | review |
+====+========+
+----+--------+
0 tuples

If we continue inserting more review records, the continuous query tagged_reviews
will be repeated until we explicitly stop it as in the queries below or shut down
the MonetDB server. Note that the temporary table cquery.tagged_reviews
associated with the continuous query will cease to exist, once the continuous query
is stopped. So, before stopping the continuous query, we save the contents of the
temporary table in a persistent table. This is one of the main advantage of using
an RDBMS such as MonetDB as the backbone of a continuous query processing
system, i.e. one can freely switch between streaming and persistent data within a
single system:
sql>CREATE TABLE tagged_reviews_persist AS SELECT * FROM cquery.tagged_reviews;
operation successful
sql>STOP CONTINUOUS tagged_reviews;
operation successful
sql>SELECT * FROM cquery.tagged_reviews;
SELECT: no such table ’tagged_reviews’

Alternatively, a user might want to emit the results of the continuous query to
some output channel, such as a web page, or trigger some notifications when certain
results have been generated. Supporting such features is on our list of future work.

D2.3 – Data Integration Solution 23

4. Conclusions

In this document, we have described the design and implementation of FaBIAM,
our solution for storing, managing and processing heterogeneous fashion data. In
particular, we details our implementation in MonetDB to support unstructured
data, continuous query processing and entity recognition using embedded machine
learning technique. Finally, we demonstrated the usefulness of this architecture
using an example in processing fashion review data.
With the introduction of streaming tables and continuous query engine, we have
taken a first important step towards streaming data processing using a powerful
and highly optimised relational engine. As a next step, we will continue extending
the FaBIAM architecture into a complete IoT platform for streaming fashion time
series processing. First of all, the new window function implementation needs to be
integrated with the continuous query engine to strengthen its power on time series
data processing. Secondly, the architecture needs to be extended for streaming data
ingestion, continuous query results emission to external channels.

D2.3 – Data Integration Solution 24

Bibliography

[1] Alan Akbik, Duncan Blythe, and Roland Vollgraf. Contextual string embeddings
for sequence labeling. In COLING 2018, 27th International Conference on
Computational Linguistics, pages 1638–1649, 2018.

[2] Ines Arous, Mourad Khayati, Philippe Cudré-Mauroux, Ying Zhang, Martin
Kersten, and Svetlin Stalinlov. RecoveDB: accurate and efficient missing blocks
recovery for large time series. In Proceedings of the 35th IEEE International
Conference on Data Engineering (ICDE 2019), April 2019. Submitted.

[3] FashionBrain. Deliverable D.1.2, Requirement analysis document, June 2017.
[4] Mourad Khayati, Michael H. Böhlen, and Johann Gamper. Memory-efficient

centroid decomposition for long time series. In IEEE 30th International
Conference on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 -
April 4, 2014, pages 100–111, April 2014. doi: 10.1109/ICDE.2014.6816643.
URL https://doi.org/10.1109/ICDE.2014.6816643.

[5] Torsten Kilias, Alexander Löser, Felix Gers, Ying Zhang, Richard Koopman-
schap, and Martin Kersten. IDEL: In-Database Neural Entity Linking. In Pro-
ceedings of the IEEE International Conference on Big Data and Smart Comput-
ing (BigComp), Feburary 2019. To appear.

D2.3 – Data Integration Solution 25

https://doi.org/10.1109/ICDE.2014.6816643

A. Appendix: MonetDB/TensorFlow Examples

In this chapter, we include several examples to show various ways in which MonetDB
and TensorFlow can interacts with each other, i.e. how values can be past from the
database environment to the Python/TensorFlow environment and vice versa: one
at a time or in a bulk (as a NumPy array or as a database column).

A.1. Basic Operations

In this section, we show how the basic operations from the TensorFlow-Examples1
repository can be implemented as SQL Python UDFs in MonetDB.
-- THE ‘‘hello world’’ example TensorFlow
CREATE FUNCTION hw () RETURNS STRING LANGUAGE PYTHON {

import tensorflow as tf
hello = tf.constant(’Hello, TensorFlow!’)
Start tf session
sess = tf.Session()
Run the op
return sess.run(hello)

};
SELECT hw();

-- Basic constant operation example using TensorFlow library
CREATE FUNCTION bsc_cnst() RETURNS TABLE(add_cnst INT, mul_cnst INT) LANGUAGE PYTHON {

import tensorflow as tf

The value returned by the constructor represents the output
of the Constant op.
a = tf.constant(2)
b = tf.constant(3)

Launch the default graph.
with tf.Session() as sess:

res = [[sess.run(a+b)], [sess.run(a*b)]]
return res

};
SELECT * FROM bsc_cnst();

-- A little helper table for the functions below
CREATE TABLE inputs (i INT, j INT, f FLOAT);
INSERT INTO inputs VALUES (2, 11, 9.1), (3, 12, 19.1), (4, 13, 29.1);

-- Basic constant operation example using TensorFlow library, and MonetDB bulk processing
CREATE FUNCTION bsc_cnst_add(i INT, j INT) RETURNS BIGINT LANGUAGE PYTHON {

import tensorflow as tf

The value returned by the constructor represents the output
of the Constant op.

1https://github.com/aymericdamien/TensorFlow-Examples/tree/master/examples/1_
Introduction

D2.3 – Data Integration Solution 26

https://github.com/aymericdamien/TensorFlow-Examples/tree/master/examples/1_Introduction
https://github.com/aymericdamien/TensorFlow-Examples/tree/master/examples/1_Introduction

A. Appendix: MonetDB/TensorFlow Examples A.1. Basic Operations

a = tf.constant(i)
b = tf.constant(j)

Launch the default graph.
with tf.Session() as sess:

res = sess.run(a+b)
return res

};
CREATE FUNCTION bsc_cnst_mul(i INT, j INT) RETURNS BIGINT LANGUAGE PYTHON {

import tensorflow as tf

The value returned by the constructor represents the output
of the Constant op.
a = tf.constant(i)
b = tf.constant(j)

Launch the default graph.
with tf.Session() as sess:

res = sess.run(a*b)
return res

};
SELECT bsc_cnst_add(i, j) AS add_cnst, bsc_cnst_mul(i, j) AS mul_cnst FROM inputs;

-- Basic variable operation example using TensorFlow library
CREATE FUNCTION bsc_vars() RETURNS TABLE(add_var INT, mul_var INT) LANGUAGE PYTHON {

import tensorflow as tf

The value returned by the constructor represents the output
of the Variable op. (define as input when running session)
a = tf.placeholder(tf.int16)
b = tf.placeholder(tf.int16)

Define some operations
add = tf.add(a, b)
mul = tf.multiply(a, b)

Launch the default graph.
with tf.Session() as sess:

res = [[sess.run(add, feed_dict={a:20, b:30})], [sess.run(mul, feed_dict={a:20, b:30})]]
return res

};
SELECT * FROM bsc_vars();

-- Basic variable operation example using TensorFlow library, and MonetDB bulk processing
CREATE FUNCTION bsc_vars_add(i INT, j INT) RETURNS BIGINT LANGUAGE PYTHON {

import tensorflow as tf

The value returned by the constructor represents the output
of the Variable op. (define as input when running session)
a = tf.placeholder(tf.int16)
b = tf.placeholder(tf.int16)

Define some operations
add = tf.add(a, b)

Launch the default graph.
with tf.Session() as sess:

res = sess.run(add, feed_dict={a:i, b:j})
return res

};
CREATE FUNCTION bsc_vars_mul(i INT, j INT) RETURNS BIGINT LANGUAGE PYTHON {

import tensorflow as tf

The value returned by the constructor represents the output
of the Variable op. (define as input when running session)

D2.3 – Data Integration Solution 27

A. Appendix: MonetDB/TensorFlow Examples A.1. Basic Operations

a = tf.placeholder(tf.int16)
b = tf.placeholder(tf.int16)

Define some operations
mul = tf.multiply(a, b)

Launch the default graph.
with tf.Session() as sess:

res = sess.run(mul, feed_dict={a:i, b:j})
return res

};
SELECT bsc_vars_add(i, j) AS add_vars, bsc_vars_mul(i, j) AS mul_vars FROM inputs;

-- Basic matrix operation example using TensorFlow library
CREATE FUNCTION bsc_mtrx_1_1 () RETURNS FLOAT LANGUAGE PYTHON {

import tensorflow as tf

Matrix Multiplication from TensorFlow official tutorial

Create a Constant op that produces a 1x2 matrix. The op is
added as a node to the default graph.
#
The value returned by the constructor represents the output
of the Constant op.
matrix1 = tf.constant([[3., 3.]])

Create another Constant that produces a 2x1 matrix.
matrix2 = tf.constant([[2.],[2.]])

Create a Matmul op that takes ’matrix1’ and ’matrix2’ as inputs.
The returned value, ’product’, represents the result of the matrix
multiplication.
product = tf.matmul(matrix1, matrix2)

To run the matmul op we call the session ’run()’ method, passing ’product’
which represents the output of the matmul op. This indicates to the call
that we want to get the output of the matmul op back.
#
All inputs needed by the op are run automatically by the session. They
typically are run in parallel.
#
The call ’run(product)’ thus causes the execution of threes ops in the
graph: the two constants and matmul.
#
The output of the op is returned in ’result’ as a numpy ‘ndarray‘ object.
with tf.Session() as sess:

res = sess.run(product)
return res

};
SELECT bsc_mtrx_1_1();

-- Basic matrix operation example using TensorFlow library
CREATE FUNCTION bsc_mtrx_1_n () RETURNS TABLE (c1 FLOAT) LANGUAGE PYTHON {

import tensorflow as tf

Matrix Multiplication from TensorFlow official tutorial

Create a Constant op that produces a 1x2 matrix. The op is
added as a node to the default graph.
#
The value returned by the constructor represents the output
of the Constant op.
matrix1 = tf.constant([[3.0, 5.0]])

Create another Constant that produces a 2xN matrix.

D2.3 – Data Integration Solution 28

A. Appendix: MonetDB/TensorFlow Examples A.1. Basic Operations

matrix2 = tf.constant([[2.1, 2.3, 2.7],[4.1, 4.3, 4.7]])

Create a Matmul op that takes ’matrix1’ and ’matrix2’ as inputs.
The returned value, ’product’, represents the result of the matrix
multiplication.
product = tf.matmul(matrix1, matrix2)

To run the matmul op we call the session ’run()’ method, passing ’product’
which represents the output of the matmul op. This indicates to the call
that we want to get the output of the matmul op back.
#
All inputs needed by the op are run automatically by the session. They
typically are run in parallel.
#
The call ’run(product)’ thus causes the execution of threes ops in the
graph: the two constants and matmul.
#
The output of the op is returned in ’result’ as a numpy ‘ndarray‘ object.
with tf.Session() as sess:

res = sess.run(product)
return res

};
SELECT * FROM bsc_mtrx_1_n();

-- Basic matrix operation example using TensorFlow library
CREATE FUNCTION bsc_mtrx_1_n_param (f FLOAT) RETURNS TABLE (c1 FLOAT) LANGUAGE PYTHON {

import tensorflow as tf

Matrix Multiplication from TensorFlow official tutorial

Create a Constant op that produces a 1x3 matrix. The op is
added as a node to the default graph.
#
The value returned by the constructor represents the output
of the Constant op.
matrix1 = tf.constant([[f]])

Create another Constant that produces a 1xN matrix.
matrix2 = tf.constant([[2.1, 2.3, 2.7, 4.1, 4.3, 4.7]])

Create a Matmul op that takes ’matrix1’ and ’matrix2’ as inputs.
The returned value, ’product’, represents the result of the matrix
multiplication.
product = tf.matmul(matrix1, matrix2)

To run the matmul op we call the session ’run()’ method, passing ’product’
which represents the output of the matmul op. This indicates to the call
that we want to get the output of the matmul op back.
#
All inputs needed by the op are run automatically by the session. They
typically are run in parallel.
#
The call ’run(product)’ thus causes the execution of threes ops in the
graph: the two constants and matmul.
#
The output of the op is returned in ’result’ as a numpy ‘ndarray‘ object.
with tf.Session() as sess:

res = sess.run(product)
return res

};
SELECT * FROM bsc_mtrx_1_n_param(5.3);

-- Basic matrix operation example using TensorFlow library
CREATE FUNCTION bsc_mtrx_2_n () RETURNS TABLE (c1 FLOAT, c2 FLOAT) LANGUAGE PYTHON {

import tensorflow as tf

D2.3 – Data Integration Solution 29

A. Appendix: MonetDB/TensorFlow Examples A.2. Word Embeddings

Matrix Multiplication from TensorFlow official tutorial

Create a Constant op that produces a 1x3 matrix. The op is
added as a node to the default graph.
#
The value returned by the constructor represents the output
of the Constant op.
matrix1 = tf.constant([[3, 5, 7]])

Create another Constant that produces a 2x1 matrix.
matrix2 = tf.constant([[2],[4]])

Create a Matmul op that takes ’matrix2’ and ’matrix1’ as inputs.
The returned value, ’product’, represents the result of the matrix
multiplication.
product = tf.matmul(matrix2, matrix1)

To run the matmul op we call the session ’run()’ method, passing ’product’
which represents the output of the matmul op. This indicates to the call
that we want to get the output of the matmul op back.
#
All inputs needed by the op are run automatically by the session. They
typically are run in parallel.
#
The call ’run(product)’ thus causes the execution of threes ops in the
graph: the two constants and matmul.
#
The output of the op is returned in ’result’ as a numpy ‘ndarray‘ object.
with tf.Session() as sess:

res = sess.run(product)
return res

};
SELECT * FROM bsc_mtrx_2_n();

A.2. Word Embeddings

In this section, we show how the word2vec model can be implemented as SQL
Python UDFs in MonetDB. The Python code is based on that used in the “Vector
Representations of Words” tutorial of TensorFlow2, and the data was downloaded
from there.
---- Step 1: read_data()

-- Contains the raw inputs
CREATE TABLE vocabulary(wrd STRING);

-- Assume text8.zip is uncompressed into /tmp/text8
COPY INTO vocabulary FROM ‘/tmp/text8’ DELIMITERS ‘’,‘ ’ NULL AS ‘thisstringdoesnotexist’ BEST EFFORT;
SELECT count(*) from vocabulary; -- sanity check

---- Step 2: build the dictionary and replace rare words with UNK token
---- Basically, this is the SQL implementation of build_dataset()

-- This is the equivalend of the "count" list
CREATE TABLE word_cnt(

idx INT GENERATED ALWAYS AS IDENTITY
(START WITH 0 INCREMENT BY 1 MAXVALUE 49999 NO CYCLE),

2https://www.tensorflow.org/tutorials/representation/word2vec

D2.3 – Data Integration Solution 30

https://www.tensorflow.org/tutorials/representation/word2vec

A. Appendix: MonetDB/TensorFlow Examples A.2. Word Embeddings

wrd STRING UNIQUE,
cnt INT);

INSERT INTO word_cnt(wrd, cnt) VALUES (’UNK’, -1);
-- Select 49999 most_common words, plus ’UNK’, we have a Top-50000
INSERT INTO word_cnt(wrd, cnt)
SELECT wrd, COUNT(wrd) AS cnt FROM vocabulary
GROUP BY wrd ORDER BY cnt DESC LIMIT 49999;

-- => Python "dictionary" == word_cnt(wrd, idx)
-- => Python "reverse_dictionary" == word_cnt(idx, wrd)
-- => Python "count" == word_cnt(wrd, cnt)

-- Compute the index of each word in the list of selected words, or 0 otherwise
ALTER TABLE vocabulary ADD COLUMN idx INT DEFAULT 0;
UPDATE vocabulary SET idx = w.idx FROM word_cnt w WHERE vocabulary.wrd = w.wrd;
-- Sanity check: => 418391
SELECT COUNT(*) FROM vocabulary WHERE idx = 0;

-- Now we know the count of ’UNK’ words
UPDATE word_cnt
SET cnt = (SELECT COUNT(*) FROM vocabulary WHERE idx = 0) WHERE wrd = ’UNK’;

-- Sanity check: => 418391
SELECT cnt FROM word_cnt WHERE wrd = ’UNK’;
-- => Python "vocabulary" == vocabulary.wrd
-- => Python "data" == vocabulary.idx

---- Step 3: Function to generate a training batch for the skip-gram model.

DECLARE data_index INT;
SET data_index = 0;
DROP FUNCTION generate_batch;
CREATE FUNCTION generate_batch(data INT)
RETURNS TABLE(batch INT, labels INT) LANGUAGE PYTHON
{
import numpy as np
import collections
import random

Use the loopback query feature of MonetDB/Python to implement Python
"global" variable
data_index = int(list(_conn.execute("SELECT data_index;").values())[0][0])
batch_size = int(list(_conn.execute("SELECT batch_size;").values())[0][0])
num_skips = int(list(_conn.execute("SELECT num_skips;").values())[0][0])
skip_window = int(list(_conn.execute("SELECT skip_window;").values())[0][0])

assert batch_size % num_skips == 0
assert num_skips <= 2 * skip_window
batch = np.ndarray(shape=(batch_size), dtype=np.int32)
labels = np.ndarray(shape=(batch_size), dtype=np.int32)
span = 2 * skip_window + 1 # [skip_window target skip_window]
buffer = collections.deque(maxlen=span)
if data_index + span > len(data):
data_index = 0

buffer.extend(data[data_index:data_index + span])
data_index += span
for i in range(batch_size // num_skips):
target = skip_window # target label at the center of the buffer
targets_to_avoid = [skip_window]
for j in range(num_skips):
while target in targets_to_avoid:
target = random.randint(0, span - 1)

targets_to_avoid.append(target)
batch[i * num_skips + j] = buffer[skip_window]
labels[i * num_skips + j] = buffer[target]

if data_index == len(data):

D2.3 – Data Integration Solution 31

A. Appendix: MonetDB/TensorFlow Examples A.2. Word Embeddings

for word in data[:span]:
buffer.append(word)

data_index = span
else:
buffer.append(data[data_index])
data_index += 1

Backtrack a little bit to avoid skipping words in the end of a batch
data_index = (data_index + len(data) - span) % len(data)
_conn.execute("SET data_index = {val};".format(val=data_index))

NOTE: the original python function returns batch as a horizontal array,
labels as a vertical array. Here we return both as a horizontal array.
return [batch, labels]

};
DECLARE batch_size INT, num_skips INT, skip_window INT;
SET batch_size = 8;
SET num_skips = 2; -- How many times to reuse an input to generate a label
SET skip_window = 1; -- How many words to consider left and right.
SELECT * FROM generate_batch((SELECT idx FROM vocabulary)); -- => 169.640ms

---- Step 4 & 5: Build and train a skip-gram model, and start training

CREATE FUNCTION compute_embeddings (dict_keys INT, dict_vals STRING)
RETURNS TABLE (embeddings BLOB) LANGUAGE PYTHON
{
import tensorflow as tf
import numpy as np
import math

Step 4: Build and train a skip-gram model
embedding_size = int(list(

_conn.execute("SELECT embedding_size;").values())[0][0])
vocabulary_size = int(list(

_conn.execute("SELECT vocabulary_size;").values())[0][0])
batch_size = int(list(_conn.execute("SELECT batch_size;").values())[0][0])
num_skips = int(list(_conn.execute("SELECT num_skips;").values())[0][0])
skip_window = int(list(_conn.execute("SELECT skip_window;").values())[0][0])

FIXME: might want to declare these variables as SQL variables
We pick a random validation set to sample nearest neighbors. Here we limit the
validation samples to the words that have a low numeric ID, which by
construction are also the most frequent.
valid_size = 16 # Random set of words to evaluate similarity on.
valid_window = 100 # Only pick dev samples in the head of the distribution.
valid_examples = np.random.choice(valid_window, valid_size, replace=False)
num_sampled = 64 # Number of negative examples to sample.

graph = tf.Graph()

with graph.as_default():
Input data.
train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)

Ops and variables pinned to the CPU because of missing GPU implementation
with tf.device(’/cpu:0’):
Look up embeddings for inputs.
embeddings = tf.Variable(

tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
embed = tf.nn.embedding_lookup(embeddings, train_inputs)

Construct the variables for the NCE loss
nce_weights = tf.Variable(

D2.3 – Data Integration Solution 32

A. Appendix: MonetDB/TensorFlow Examples A.2. Word Embeddings

tf.truncated_normal([vocabulary_size, embedding_size],
stddev=1.0 / math.sqrt(embedding_size)))

nce_biases = tf.Variable(tf.zeros([vocabulary_size]))

Compute the average NCE loss for the batch.
tf.nce_loss automatically draws a new sample of the negative labels each
time we evaluate the loss.
loss = tf.reduce_mean(

tf.nn.nce_loss(weights=nce_weights,
biases=nce_biases,
labels=train_labels,
inputs=embed,
num_sampled=num_sampled,
num_classes=vocabulary_size))

Construct the SGD optimizer using a learning rate of 1.0.
optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss)

Compute the cosine similarity between minibatch examples and all embeddings.
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
normalized_embeddings = embeddings / norm
valid_embeddings = tf.nn.embedding_lookup(

normalized_embeddings, valid_dataset)
similarity = tf.matmul(

valid_embeddings, normalized_embeddings, transpose_b=True)

Add variable initializer.
init = tf.global_variables_initializer()

Step 5: Begin training
num_steps = int(list(

_conn.execute("SELECT num_steps;").values())[0][0])

with tf.Session(graph=graph) as session:
We must initialize all variables before we use them.
init.run()

NOTE: replaced xrange of Python2 with range of Python3
average_loss = 0
for step in range(num_steps):
NOTE: the original generate_batch() is now an SQL function
res = _conn.execute("SELECT * FROM generate_batch((SELECT idx FROM vocabulary));")
batch_inputs = list(res[’batch’])
batch_labels = np.array([list(res[’labels’])]).transpose()
feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels}

We perform one update step by evaluating the optimizer op (including it
in the list of returned values for session.run()
_, loss_val = session.run([optimizer, loss], feed_dict=feed_dict)
average_loss += loss_val

if step % 2000 == 0:
if step > 0:

average_loss /= 2000
The average loss is an estimate of the loss over the last 2000 batches.
print(’Average loss at step ’, step, ’: ’, average_loss)
average_loss = 0

Construct the reverse_dictionary from database data
reverse_dictionary = dict(zip(dict_keys, dict_vals))
Note that this is expensive (~20% slowdown if computed every 500 steps)
if step % 10000 == 0:
sim = similarity.eval()
for i in range(valid_size):

D2.3 – Data Integration Solution 33

A. Appendix: MonetDB/TensorFlow Examples A.2. Word Embeddings

valid_word = reverse_dictionary[valid_examples[i]]
top_k = 8 # number of nearest neighbors
nearest = (-sim[i, :]).argsort()[1:top_k + 1]
log_str = ’Nearest to %s:’ % valid_word
for k in range(top_k):
close_word = reverse_dictionary[nearest[k]]
log_str = ’%s %s,’ % (log_str, close_word)

print(log_str)
final_embeddings = normalized_embeddings.eval()

res = list()
for row in final_embeddings[:]:
res.append(row.tobytes())

return res
};

---- Finally, set up the SQL environment and use the above functions to do the job.

DECLARE embedding_size INT, vocabulary_size INT, num_steps INT;
SET embedding_size = 128; -- Dimension of the embedding vector.
SET vocabulary_size = 50000;
SET num_steps = 100001;
SET batch_size = 128;
SET num_skips = 2; -- How many times to reuse an input to generate a label
SET skip_window = 1; -- How many words to consider left and right.
CREATE TABLE embeddings (embd BLOB);
INSERT INTO embeddings
SELECT * FROM compute_embeddings((SELECT idx, wrd FROM word_cnt));

-- A simple example of how to return an M x N matrix as a column of BLOBs
CREATE FUNCTION b()
RETURNS TABLE(b BLOB) LANGUAGE PYTHON
{
import numpy as np
ary = np.array([[0.14792269, 0.27395913, -0.1010012],

[0.10359713, 0.03716619, -0.16007],
[0.0925912 , 0.18409029, 0.05768026],
[0.09125206, 0.12109927, -0.06208262],
[0.17739627, 0.10868212, -0.04809754]])

res = list()
for row in ary[:]:
res.append(row.tobytes())

return res
};
SELECT * FROM b();

D2.3 – Data Integration Solution 34

	List of Figures
	List of Tables
	List of Acronyms and Abbreviations
	1 Introduction
	1.1 Scope of this Deliverable

	2 FaBIAM
	2.1 Architecture Overview
	2.2 JSON Data Processing
	2.3 Streaming Data and Continuous Query
	2.4 Text Data Analysis with Machine Learning

	3 FashionBrain Use Cases
	4 Conclusions
	Bibliography
	A Appendix: MonetDB/TensorFlow Examples
	A.1 Basic Operations
	A.2 Word Embeddings

