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Abstract 

This deliverable outlines a suite of algorithms and sample code for a 

time-series package to be integrated into MonetDB. We review traditional 

approaches to time-series analysis and outline a state-of-the-art recurrent 

neural method using long-short term memory networks and sequential 

importance resampling. 

 

1 Introduction 

Time-series analysis is the task of modeling sequential data where the sequence 
reflects the unfolding of time. In the fashion industry, these time-series may arise 
in reference to customers (clicks-per-customer on types of item), in reference 
to market demand (purchases fluctuating over time in a given sector), or in 
reference to products (number of mentions over time of specific products on 
social media channels). 

Typical tasks in time-series analysis [16] include: 

• Forecasting (F): predicting a subsequent value of a quantity given past 
values. 

• Distributional modeling (DM): modeling the full process giving rise 
to empirical time-series. 

• Dependency analysis (DA): understanding the relationship between 
two time-series from data. 

• Missing value estimation (MV): imputing missing or unavailable time- 
series points from observed points. 

 

In the fashion industry F may be used to predict load and consequently per- 
form load balancing to cope with the phenomenon of fluctuating sales. DM may 
be used to check how well a specific customer’s data corresponds to modeling as- 
sumptions and also as preprocessing step to a subsequent data scientific pipeline. 
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DA may be used to understand the inter-relationship between diverse business 
sectors, such as country, gender and type-of-product, and how these evolve over 
time. MV be used to infer lost or unavailable measurements of specific cus- 
tomers at a range of time points. 

Difficulties typically hampering traditional approaches to the above tasks 
include: 

 

1. Models are often overly simple, e.g. employing strong linear and/or Gaus- 
sian assumptions [1, 13, 21]. 

2. Models usually ignore changing trends over time, i.e. non-stationarities 
and cannot be adapted to model long-range dependencies [13, 18, 27]. 

3. Models lack a probabilistic component, not yielding estimates with confi- 
dence estimates of their certainty [11, 21]. 

 

In fashion e-commerce these difficulties are particularly urgent since: 
 

1. Time-series such as transactional click-data exhibit a high-degree of non- 
linearity and non-Gaussianity. 

2. Fashion data is intrinsically seasonally and responds to emerging trends. 
Thus non-stationarity must be incorporated into models. 

3. Weighted decisions, which allow a strategy to applied probabilistically, in 
the absence of certainty, is vital to yielding financially optimal decisions. 

 

The aim of this deliverable is to outline a suite of state-of-the-art algorithms 
time-series algorithms for incorporation into the MonetDB framework, allowing 
time-series measures for F, DM, DA and MV to be employed in state-of-the- 
art information retrieval. 

The proposals must thus fulfill the following requirements: 
 

A. The algorithms must cope with problems 1 to 3. 

B. The framework must be self-contained and unified as to admit plausible 
incorporation into MonetDB within the scope of the project. 

C. Sample code should be provided in python as a blueprint for the MonetDB 

solutions. 
 

In this report we summarize a suite of algorithms and explain how they fulfill 
these requirements: 

 

A. We use a state-of-the-art probabilistic state-space model based on recur- 
rent neural networks (RNNs) and an accompanying training framework to 
solve problems 1 to 3. 



4  

 
 
 

 

B. The RNN model has the universal approximation property (is highly flex- 
ible) and may be trained in a unified manner to solve F, DM, DA and 
MV; the only difference between the tasks consists in data-preparation. 
This allows for simple adaptation to the MonetDB framework. 

C. An open-source python library probrnn is freely available for download 

and may be used as a basis for further progress in the project. 
 

2 Background 

A time-series [16] is an indexed sequence of random variables X1, X2, . . . , Xt := 
X1:t which is distributed according to some underlying join probability distri- 
bution: X 

X1:t ∼  P(X1, X2, . . . , Xt) 
Typically several sample paths of such a time-series are observed: Xi, Xi, . . . , Xi

 

for i = 1, . . . , n and t an arbitrary end time point. 
1 2 t 

 

2.1 Forecasting (F) 

Formally, forecasting consists of producing a good estimate of E(Xt|X1, . . . , Xt−1), 
or more generally P(Xt|X1, . . . , Xt−1). 

 
2.2 Distribution modeling (DM) 
Formally, distribution modeling consists of estimating P(X1, X2, . . . , Xt). 

 

2.3 Dependency analysis (DA) 

Dependency analysis consists in estimating values of one time-series from an- 
other: 

P(Yt|X1:t, Y1:t−1) 

 

2.4 Missing value estimation (MV) 

In missing value estimation we are given a sample path with missing values: 

Xi i i i 

1, X2, ?, ?, X5, ?, . . . , Xt 

The task is to estimate these missing values. 
 

3 Prior Work 

Traditionally methods for F, DM, DA and MV have typically drawn from one 
or more of the following restrictive assumptions: 

 

AS1. The best estimate is based on a linear relationship. 
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AS2. The noise innovations around the true model are Gaussian. 

AS3. The marginal distributions across time are constant (stationarity). 

AS4. Time-dependence ranges over a finite number of time-steps (no long-range 
dependence). 

AS5. Negligible loss in performance is achieved by neglecting the confidence of 
an estimate. 

 
3.1 Forecasting (F) 

The simplest of models for time-series forecasting are the linear autoregressive 
model [16] (AR): 

k 

Xt = 
' 
φiXt 

i=1 

 

i + c + Et 

and the moving average model [16] (MA): 
 

k 

Xt = 
' 

θi Et 

i=1 

 

i + µ + Et 

The Greek letters apart from E are parameters of the model and E is typically 
assumed to be white noise. 

These models are particularly restrictive, clearly using AS1.–AS5.. Often 
hard and fast estimates are based on this model, so that in practice AS5. is also 
applied. 

In order to overcome this restrictiveness, innumerable extensions of these 
models have been proposed, with increasingly complex acronymcs: ARMA, 
GARMA, ARIMA, FARIMA, ARCH, GARCH, FIGARCH, NGARCH and so 
forth [16, 20, 2, 22, 4]. 

ARMA combines the advantages of AR and MA models, thus is more flex- 
ible,  but still subject to AS1.–4..   ARIMA extends ARMA using a specific 
non-stationarity assumption, thus partially solving AS3. but still subject to the 
remaining assumptions.  FARIMA extends ARIMA in a way to partially solve 
AS5. but in a parametric fashion.  The other variants add a property know 
as “autoregressive conditional heteroskedasticity” solving the non-stationarity 
problem in a slightly different way taylored especially to financial data. NGARCH 
solves the non-linearity problem using a highly specific model of non-linearity. 
All of these extensions contain an implicit Gaussianity assumption, AS2. 

 
3.2 Distribution modeling (DM) 

Standard approaches to distribution modeling make parametric assumptions 
about the joint distribution P(X1, . . . , Xt). For example one may assume that 

X1:t is distributed according to a multivariate Gaussian [12]: 

X1:t ∼  N (µ, Σ) 

− 

− 
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. More flexible approaches relax the strict Gaussianity assumption, for instance 
assuming a mixture of Gaussians [3]: 

X1:t ∼  
' 

wi N (µi, Σi) 
i 

or by assuming a fully non-parametric model, using for instance a kernel density 
estimator [23]. 

Although these latter methods are in principle flexible enough to handle 
arbitrary distributions, they do not scale well to high dimensional data. The 
former methods, on the other hand are overly restrictive. 

 
3.3 Dependency analysis (DA) 

Traditional approaches to dependency analysis use highly parametric assump- 
tions about the type of of dependency, assuming linearity (correlation analysis) 
[6], Gaussianity (Pearson correlation analysis) [6], or specific assumptions about 
parameters (LASSO [25], elastic net [28]). Few of these dependency analysis 
methods fully relax the linearity assumption, allowing for arbitrary dependen- 
cies to be modeled – general methods such as mutual information require a 
huge dataset size to be of practical interest [7]. Moreover, few of these methods 
are specifically tailored to time-series analysis, where the dependency between 
time-points can hamper analysis of the strength of dependencies. Accordingly 
in the study of time-series many authors use a model discussed in the context 
of Fand examine the performance of estimators, such as correlation conditional 
on this modeling assumption. 

 
3.4 Missing value estimation (MV) 

There are two varieties of missing value estimation methods: parametric and 
non-parametric. In the parametric case, one typically assumes a model, and 
performs expectation-maximization (EM) to estimate the missing values, per- 
forming updates using the modeling assumption [9]. 

In the non-parametric or semi-parametric framework typically one-assumes 
that the data-generating distribution is degenerate in some-sense and uses this 
degeneracy assumption to obtain estimates for missing values which are valid 
given for a range of models; this variety includes compressed sensing [10] and 
low-rank matrix completion [5]. 

 
4 Proposals 

We now outline our suite of time-series algorithms. Let f (Xt, ht) be the recur- 

rence relation of a long-short term memory recurrent neural network (LSTM) 
[17], with an embedding layer to the input of the LSTM. Then we make the 
following approximation: 

P (Xt|X1, . . . , Xt−1) ≈ P (Xt|Xt−1, ht) 
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where:  
ht = f (Xt−1, ht) 

LSTMs help to avoid the assumptions AS1.–5., with the following solutions: 

SOL1. They are capable of modeling arbitrary non-linear relationships [24]. 

SOL2. In combination with a binning approach and a softmax layer on the output, 
they may cope with arbitrary noise distributions [14]. 

SOL3. They do not a priori assume stationarity, since the time-step is implicit 
in ht. 

SOL4. Long range dependence may be modeled in a manner superior to tradi- 
tional neural networks, potentially spanning hundredes of time-steps [17]. 

SOL5. They may be parameterized in a probabilistic manner as described above 
[19, 15]. 

We now describe how training the network f to model P (Xt|Xt−1, ht) may 
be used to perform F, DM, DA and MV. A schematic of our approach is 
displayed in Figure 1. 

 
4.1 Forecasting (F) 
The sample is split into windows Xi, . . . , Xi and the neural network is trained 

1 t 
to  maximize  P (Xi|Xi

 , ht). If the windows are consecutive in time, the final 
t t−1 

hidden state from a previous window is passed to the next window as the initial 
state. 

 
4.2 Distribution modeling (DM) 

The LSTM is trained as before but with a learnt and constant initial hidden 
state. The approximate joint is then given by: 

t 

P(X1:t) = 
n 

P(Xi|X1:i−1) 

i=1 

t n 
≈ 

i=1 

P(Xi|hi) 

This approach is known as neural autoregressive distribution estimation [26]. 

 
4.3 Dependency  analysis 

The LSTM network is trained to predict the next value of the sequence: 

 

X1, Y1, X2, Y2, . . . , Xt 

At inference time, a particle filtering approach is applied using sequential 
importance resampling [8] to predict Yt from previous values. 
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Figure 1: Schematic of the proposed approach 
 

4.4 Missing value estimation (MV) 

A particle filter in combination with expectation maximization on the LSTM 
model is used to maximize the probability of the observed sample paths. 
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5 Code 

Code is available here. 

Installation: 

git clone git@github.com:zalandoresearch/probrnn.git 

cd probnn/ 

make  install 
 

 

 

Testing: 
 

 

make clean 

make test 
 

 

 

Set up F data: 
 

 

from probrnn import data 

import numpy as np 

 
x  =  np.random.randn(100000) 

datastruct     =     data.TimeSeries(x) 
 

 

 

Set up DM data: 
 

 

from probrnn import data 

import numpy as np 

 
x  =  np.random.randn(1000,  10) 

datastruct    =    data.NadeWrapper(x) 
 

 

 

Set up DA data: 
 

 

from probrnn import data 

import numpy as np 

 
x  =   np.random.randn(1000) 

y  =   np.random.randn(1000) 

z   =   np.zeros(0000) 

z[::2]  =  x 

z[1::2]  =  y 

datastruct  =  data.TimeSeries(z) 
 

 

 

Get a forecasting model: 
 

 

from probrnn import models 

 
model    =    models.TimeSeriesPrediction(datastruct,    params=params) 

 
 

https://github.com/zalandoresearch/probrnn
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Get a distribution estimation model: 
 

 

from probrnn import models 

 
model   =   models.NADE(datastruct,   params=params) 

 
 

 

Do the training, save the model, and the log the training. 
 

 

training = models.Training(model, "test_model", "test_log.json") 

callback =  lambda  err, i, _: print "loss: {err};".format(err=err) 

training.train(callback) 
 

 

 

Same thing but with missing values: 
 

 

from probrnn import inference 

 
imputer  =  lambda  a,  b:  inference.NaiveSIS(a,  b) 

training   =   models.Training( 

model, 

"test_model", 

"test_log.json", 

imputer=imputer 

) 

training.train(callback) 
 

 

 

Fill in missing values at test time: 
 

 

x[np.random.choice(len(x),   replace=False,   size=50)]   =   np.nan 

estimate   =   imputer(model,   x).estimate() 
 

 

 
 

6 Conclusion 

We have provided an overview of traditional approaches to time-series analysis 
and outlined a suite of state-of-the-art algorithms using probabilistic state-space 
recurrent neural networks. The simplicity and generality of the approach should 
allow efficient incorporation in the MonetDB codebase. 
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