
1

Horizon 2020 Framework Programme
Grant Agreement: 732328 – FashionBrain

Document Information

Deliverable number: D1.4
Deliverable title: Software Requirements: SSM library for time series modelling and trend
prediction

Deliverable description: Most modern algorithms of State Space Models (SSM) for

time series analysis and probabilistic inference will be summarised in this deliverable

and will be used as a basis for future software developments in the project. The output

will be available for project internal and public use.

Due date of deliverable: 31/12/17
Actual date of deliverable: Revised version submitted 20/04/18

Authors: Duncan Blythe, Alan Akbik, Roland Vollgraf
Project partners: Zalando
Workpackage: WP1
Workpackage leader: Roland Vollgraf
Dissemination Level: Public

Change Log

Version Date Status Author (Partner) Description/Approval Level

1 31/12/17 Final Zalando Public

2

Abstract

This deliverable outlines a suite of algorithms and sample code for a

time-series package to be integrated into MonetDB. We review traditional

approaches to time-series analysis and outline a state-of-the-art recurrent

neural method using long-short term memory networks and sequential

importance resampling.

1 Introduction

Time-series analysis is the task of modeling sequential data where the sequence
reflects the unfolding of time. In the fashion industry, these time-series may arise
in reference to customers (clicks-per-customer on types of item), in reference
to market demand (purchases fluctuating over time in a given sector), or in
reference to products (number of mentions over time of specific products on
social media channels).

Typical tasks in time-series analysis [16] include:

• Forecasting (F): predicting a subsequent value of a quantity given past
values.

• Distributional modeling (DM): modeling the full process giving rise
to empirical time-series.

• Dependency analysis (DA): understanding the relationship between
two time-series from data.

• Missing value estimation (MV): imputing missing or unavailable time-
series points from observed points.

In the fashion industry F may be used to predict load and consequently per-
form load balancing to cope with the phenomenon of fluctuating sales. DM may
be used to check how well a specific customer’s data corresponds to modeling as-
sumptions and also as preprocessing step to a subsequent data scientific pipeline.

3

DA may be used to understand the inter-relationship between diverse business
sectors, such as country, gender and type-of-product, and how these evolve over
time. MV be used to infer lost or unavailable measurements of specific cus-
tomers at a range of time points.

Difficulties typically hampering traditional approaches to the above tasks
include:

1. Models are often overly simple, e.g. employing strong linear and/or Gaus-
sian assumptions [1, 13, 21].

2. Models usually ignore changing trends over time, i.e. non-stationarities
and cannot be adapted to model long-range dependencies [13, 18, 27].

3. Models lack a probabilistic component, not yielding estimates with confi-
dence estimates of their certainty [11, 21].

In fashion e-commerce these difficulties are particularly urgent since:

1. Time-series such as transactional click-data exhibit a high-degree of non-
linearity and non-Gaussianity.

2. Fashion data is intrinsically seasonally and responds to emerging trends.
Thus non-stationarity must be incorporated into models.

3. Weighted decisions, which allow a strategy to applied probabilistically, in
the absence of certainty, is vital to yielding financially optimal decisions.

The aim of this deliverable is to outline a suite of state-of-the-art algorithms
time-series algorithms for incorporation into the MonetDB framework, allowing
time-series measures for F, DM, DA and MV to be employed in state-of-the-
art information retrieval.

The proposals must thus fulfill the following requirements:

A. The algorithms must cope with problems 1 to 3.

B. The framework must be self-contained and unified as to admit plausible
incorporation into MonetDB within the scope of the project.

C. Sample code should be provided in python as a blueprint for the MonetDB

solutions.

In this report we summarize a suite of algorithms and explain how they fulfill
these requirements:

A. We use a state-of-the-art probabilistic state-space model based on recur-
rent neural networks (RNNs) and an accompanying training framework to
solve problems 1 to 3.

4

B. The RNN model has the universal approximation property (is highly flex-
ible) and may be trained in a unified manner to solve F, DM, DA and
MV; the only difference between the tasks consists in data-preparation.
This allows for simple adaptation to the MonetDB framework.

C. An open-source python library probrnn is freely available for download

and may be used as a basis for further progress in the project.

2 Background

A time-series [16] is an indexed sequence of random variables X1, X2, . . . , Xt :=
X1:t which is distributed according to some underlying join probability distri-
bution: X

X1:t ∼ P(X1, X2, . . . , Xt)
Typically several sample paths of such a time-series are observed: Xi, Xi, . . . , Xi

for i = 1, . . . , n and t an arbitrary end time point.
1 2 t

2.1 Forecasting (F)

Formally, forecasting consists of producing a good estimate of E(Xt|X1, . . . , Xt−1),
or more generally P(Xt|X1, . . . , Xt−1).

2.2 Distribution modeling (DM)
Formally, distribution modeling consists of estimating P(X1, X2, . . . , Xt).

2.3 Dependency analysis (DA)

Dependency analysis consists in estimating values of one time-series from an-
other:

P(Yt|X1:t, Y1:t−1)

2.4 Missing value estimation (MV)

In missing value estimation we are given a sample path with missing values:

Xi i i i

1, X2, ?, ?, X5, ?, . . . , Xt

The task is to estimate these missing values.

3 Prior Work

Traditionally methods for F, DM, DA and MV have typically drawn from one
or more of the following restrictive assumptions:

AS1. The best estimate is based on a linear relationship.

5

AS2. The noise innovations around the true model are Gaussian.

AS3. The marginal distributions across time are constant (stationarity).

AS4. Time-dependence ranges over a finite number of time-steps (no long-range
dependence).

AS5. Negligible loss in performance is achieved by neglecting the confidence of
an estimate.

3.1 Forecasting (F)

The simplest of models for time-series forecasting are the linear autoregressive
model [16] (AR):

k

Xt =
'
φiXt

i=1

i + c + Et

and the moving average model [16] (MA):

k

Xt =
'

θi Et

i=1

i + µ + Et

The Greek letters apart from E are parameters of the model and E is typically
assumed to be white noise.

These models are particularly restrictive, clearly using AS1.–AS5.. Often
hard and fast estimates are based on this model, so that in practice AS5. is also
applied.

In order to overcome this restrictiveness, innumerable extensions of these
models have been proposed, with increasingly complex acronymcs: ARMA,
GARMA, ARIMA, FARIMA, ARCH, GARCH, FIGARCH, NGARCH and so
forth [16, 20, 2, 22, 4].

ARMA combines the advantages of AR and MA models, thus is more flex-
ible, but still subject to AS1.–4.. ARIMA extends ARMA using a specific
non-stationarity assumption, thus partially solving AS3. but still subject to the
remaining assumptions. FARIMA extends ARIMA in a way to partially solve
AS5. but in a parametric fashion. The other variants add a property know
as “autoregressive conditional heteroskedasticity” solving the non-stationarity
problem in a slightly different way taylored especially to financial data. NGARCH
solves the non-linearity problem using a highly specific model of non-linearity.
All of these extensions contain an implicit Gaussianity assumption, AS2.

3.2 Distribution modeling (DM)

Standard approaches to distribution modeling make parametric assumptions
about the joint distribution P(X1, . . . , Xt). For example one may assume that

X1:t is distributed according to a multivariate Gaussian [12]:

X1:t ∼ N (µ, Σ)

−

−

6

. More flexible approaches relax the strict Gaussianity assumption, for instance
assuming a mixture of Gaussians [3]:

X1:t ∼
'

wi N (µi, Σi)
i

or by assuming a fully non-parametric model, using for instance a kernel density
estimator [23].

Although these latter methods are in principle flexible enough to handle
arbitrary distributions, they do not scale well to high dimensional data. The
former methods, on the other hand are overly restrictive.

3.3 Dependency analysis (DA)

Traditional approaches to dependency analysis use highly parametric assump-
tions about the type of of dependency, assuming linearity (correlation analysis)
[6], Gaussianity (Pearson correlation analysis) [6], or specific assumptions about
parameters (LASSO [25], elastic net [28]). Few of these dependency analysis
methods fully relax the linearity assumption, allowing for arbitrary dependen-
cies to be modeled – general methods such as mutual information require a
huge dataset size to be of practical interest [7]. Moreover, few of these methods
are specifically tailored to time-series analysis, where the dependency between
time-points can hamper analysis of the strength of dependencies. Accordingly
in the study of time-series many authors use a model discussed in the context
of Fand examine the performance of estimators, such as correlation conditional
on this modeling assumption.

3.4 Missing value estimation (MV)

There are two varieties of missing value estimation methods: parametric and
non-parametric. In the parametric case, one typically assumes a model, and
performs expectation-maximization (EM) to estimate the missing values, per-
forming updates using the modeling assumption [9].

In the non-parametric or semi-parametric framework typically one-assumes
that the data-generating distribution is degenerate in some-sense and uses this
degeneracy assumption to obtain estimates for missing values which are valid
given for a range of models; this variety includes compressed sensing [10] and
low-rank matrix completion [5].

4 Proposals

We now outline our suite of time-series algorithms. Let f (Xt, ht) be the recur-

rence relation of a long-short term memory recurrent neural network (LSTM)
[17], with an embedding layer to the input of the LSTM. Then we make the
following approximation:

P (Xt|X1, . . . , Xt−1) ≈ P (Xt|Xt−1, ht)

7

where:
ht = f (Xt−1, ht)

LSTMs help to avoid the assumptions AS1.–5., with the following solutions:

SOL1. They are capable of modeling arbitrary non-linear relationships [24].

SOL2. In combination with a binning approach and a softmax layer on the output,
they may cope with arbitrary noise distributions [14].

SOL3. They do not a priori assume stationarity, since the time-step is implicit
in ht.

SOL4. Long range dependence may be modeled in a manner superior to tradi-
tional neural networks, potentially spanning hundredes of time-steps [17].

SOL5. They may be parameterized in a probabilistic manner as described above
[19, 15].

We now describe how training the network f to model P (Xt|Xt−1, ht) may
be used to perform F, DM, DA and MV. A schematic of our approach is
displayed in Figure 1.

4.1 Forecasting (F)
The sample is split into windows Xi, . . . , Xi and the neural network is trained

1 t
to maximize P (Xi|Xi

 , ht). If the windows are consecutive in time, the final
t t−1

hidden state from a previous window is passed to the next window as the initial
state.

4.2 Distribution modeling (DM)

The LSTM is trained as before but with a learnt and constant initial hidden
state. The approximate joint is then given by:

t

P(X1:t) =
n

P(Xi|X1:i−1)

i=1

t n
≈

i=1

P(Xi|hi)

This approach is known as neural autoregressive distribution estimation [26].

4.3 Dependency analysis

The LSTM network is trained to predict the next value of the sequence:

X1, Y1, X2, Y2, . . . , Xt

At inference time, a particle filtering approach is applied using sequential
importance resampling [8] to predict Yt from previous values.

8

Figure 1: Schematic of the proposed approach

4.4 Missing value estimation (MV)

A particle filter in combination with expectation maximization on the LSTM
model is used to maximize the probability of the observed sample paths.

9

5 Code

Code is available here.

Installation:

git clone git@github.com:zalandoresearch/probrnn.git

cd probnn/

make install

Testing:

make clean

make test

Set up F data:

from probrnn import data

import numpy as np

x = np.random.randn(100000)

datastruct = data.TimeSeries(x)

Set up DM data:

from probrnn import data

import numpy as np

x = np.random.randn(1000, 10)

datastruct = data.NadeWrapper(x)

Set up DA data:

from probrnn import data

import numpy as np

x = np.random.randn(1000)

y = np.random.randn(1000)

z = np.zeros(0000)

z[::2] = x

z[1::2] = y

datastruct = data.TimeSeries(z)

Get a forecasting model:

from probrnn import models

model = models.TimeSeriesPrediction(datastruct, params=params)

https://github.com/zalandoresearch/probrnn

10

Get a distribution estimation model:

from probrnn import models

model = models.NADE(datastruct, params=params)

Do the training, save the model, and the log the training.

training = models.Training(model, "test_model", "test_log.json")

callback = lambda err, i, _: print "loss: {err};".format(err=err)

training.train(callback)

Same thing but with missing values:

from probrnn import inference

imputer = lambda a, b: inference.NaiveSIS(a, b)

training = models.Training(

model,

"test_model",

"test_log.json",

imputer=imputer

)

training.train(callback)

Fill in missing values at test time:

x[np.random.choice(len(x), replace=False, size=50)] = np.nan

estimate = imputer(model, x).estimate()

6 Conclusion

We have provided an overview of traditional approaches to time-series analysis
and outlined a suite of state-of-the-art algorithms using probabilistic state-space
recurrent neural networks. The simplicity and generality of the approach should
allow efficient incorporation in the MonetDB codebase.

References

[1] Hirotugu Akaike. Fitting autoregressive models for prediction. Annals of

the institute of Statistical Mathematics, 21(1):243–247, 1969.

[2] Michael A Benjamin, Robert A Rigby, and D Mikis Stasinopoulos. Gen-
eralized autoregressive moving average models. Journal of the American

Statistical association, 98(461):214–223, 2003.

11

[3] Christopher M Bishop. Pattern recognition and machine learning. springer,
2006.

[4] Tim Bollerslev. Generalized autoregressive conditional heteroskedasticity.
Journal of econometrics, 31(3):307–327, 1986.

[5] Emmanuel J Candès and Benjamin Recht. Exact matrix completion via
convex optimization. Foundations of Computational mathematics, 9(6):717,
2009.

[6] George Casella and Roger L Berger. Statistical inference, volume 2.
Duxbury Pacific Grove, CA, 2002.

[7] Thomas M Cover and Joy A Thomas. Elements of information theory.
John Wiley & Sons, 2012.

[8] Nando De Freitas, C Andrieu, Pedro Højen-Sørensen, M Niranjan, and
A Gee. Sequential monte carlo methods for neural networks. In Sequential

Monte Carlo methods in practice, pages 359–379. Springer, 2001.

[9] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum like-
lihood from incomplete data via the em algorithm. Journal of the royal

statistical society. Series B (methodological), pages 1–38, 1977.

[10] David L Donoho. Compressed sensing. IEEE Transactions on information

theory, 52(4):1289–1306, 2006.

[11] James Durbin and Siem Jan Koopman. Time series analysis of non-gaussian
observations based on state space models from both classical and bayesian
perspectives. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 62(1):3–56, 2000.

[12] David A Freedman. Statistical models: theory and practice. cambridge
university press, 2009.

[13] Clive WJ Granger. Causality, cointegration, and control. Journal of Eco-

nomic Dynamics and Control, 12(2-3):551–559, 1988.

[14] Alex Graves. Generating sequences with recurrent neural networks. arXiv

preprint arXiv:1308.0850, 2013.

[15] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recog-
nition with deep recurrent neural networks. In Acoustics, speech and signal

processing (icassp), 2013 ieee international conference on, pages 6645–6649.
IEEE, 2013.

[16] James Douglas Hamilton. Time series analysis, volume 2. Princeton uni-
versity press Princeton, 1994.

[17] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neu-

ral computation, 9(8):1735–1780, 1997.

12

[18] Søren Johansen. Statistical analysis of cointegration vectors. Journal of

economic dynamics and control, 12(2-3):231–254, 1988.

[19] Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and
Yonghui Wu. Exploring the limits of language modeling. arXiv preprint

arXiv:1602.02410, 2016.

[20] Alan Pankratz. Forecasting with univariate Box-Jenkins models: Concepts

and cases, volume 224. John Wiley & Sons, 2009.

[21] Carl Edward Rasmussen and Christopher KI Williams. Gaussian processes

for machine learning, volume 1. MIT press Cambridge, 2006.

[22] Peter M Robinson. Time series with long memory. Advanced Texts in
Econometrics, 2003.

[23] Murray Rosenblatt et al. Remarks on some nonparametric estimates of a

density function. The Annals of Mathematical Statistics, 27(3):832–837,
1956.

[24] Hava T Siegelmann and Eduardo D Sontag. On the computational power
of neural nets. Journal of computer and system sciences, 50(1):132–150,
1995.

[25] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal

of the Royal Statistical Society. Series B (Methodological), pages 267–288,
1996.

[26] Benigno Uria, Marc-Alexandre Côté, Karol Gregor, Iain Murray, and Hugo
Larochelle. Neural autoregressive distribution estimation. Journal of Ma-

chine Learning Research, 17(205):1–37, 2016.

[27] Paul Von Bünau, Frank C Meinecke, Franz C Király, and Klaus-Robert
Müller. Finding stationary subspaces in multivariate time series. Physical

review letters, 103(21):214101, 2009.

[28] Hui Zou and Trevor Hastie. Regularization and variable selection via the
elastic net. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 67(2):301–320, 2005.

