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FaBIAM Overview 

The following figure shows an overview of FaBIAM.   

 

All components are integrated into the kernel of MonetDB. The solid arrows 
indicate the components that can already work together, while the dashed arrows 
indicating future integration. From bottom to top, they are divided into three 
layers: 

• Data Ingestion Layer 
This layer at the bottom of the MonetDB kernel provides various features 
for loading data into MonetDB. In the fashion world, there are three major 
groups of data: structured (e.g. product catalogues and sales information), 
unstructured (e.g. fashion blogs, customer reviews, social media posts and 
news messages) and binary data (e.g. videos and pictures). A prerequisite 
for the design of FaBIAM is that it must be able to store and process both 
structured and unstructured data, while binary data can be generally left as 
is. Therefore, next to CSV (the de facto standard data format for structured 
data) MonetDB also support JSON (the de facto standard data format for 
unstructured data) as a native data type.  

• Processing Layer 
This layer in the middle of the MonetDB kernel provides various features to 
facilitate query processing. In the context of the FashionBrain project, we 
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have introduced several major extensions in this layer geared towards 
streaming and time series (fashion) data processing by means of both 
traditional SQL queries, as well as using modern machine learning 
technologies. This include i) major extensions to MonetDB's support for 
Window Function ii) a CQE for streaming and IoT data, which will be 
detailed below; and iii) a tight integration with various machine learning 
libraries, including the popular TensorFlow library, through SQL Python 
UDFs. 

• Analysis Layer 
In this layer at the top of the MonetDB kernel, we have integrated 
technologies of FashionBrain partners (under the collaborations of the 
respective partner) to enrich MonetDB's analytical features for (fashion) text 
data and time series data: 

o FLAIR is a python library (provided by Zalando) for named entity 
recognition. 

o IDEL is also a python library (provided by BEUTH), but for linking 
of already identified entities between text data and relational records, 
and for records linkage of already identified entities in relational 
records. 

o RecovDB is a MonetDB-based RDBMS for the recovery of blocks of 
missing values in time series stored in MonetDB. The CD-based 
recovery algorithm (provided by UNIFR) is implemented as SQL 
Python UDFs, but UNIFR and MDBS are working together on 
porting it to MonetDB native C-UDFs. 

In summary, the design of the FaBIAM architecture covers the whole stack of data 
loading, processing and analysis specially for fashion text and time series data. 
Further in this showcase, we detail one component in each layer in a separate 
section, i.e. JSON, continuous query processing and FLAIR integration. 

Streaming Data and Continuous Query 
Time series data are series of values obtained at successive times with regular or 
irregular intervals between them. Many fashion data, such as customer reviews, 
fashion blogs, social media messages and click streams, can be regarded as time 
series (mostly) with irregular time intervals. Taking customer reviews as an 
example, the raw data can be simply modelled as one long series of pairs (Of 
course, each pair needs to be annotated with meta information, such as the identify 
of the customer and the reviewed product.). By analysing this type of data, which 
we refer to as fashion time series, fashion retailers would be able to gain valuable 
insights of not only trends, moods and opinions of potential customers at a given 
moment in time, but also the changes in trends, moods and opinions of a period of 
time. Fashion time series is usually produced as streams of data. Hence, supporting 
fashion time series does not only require a system to be able to process streaming 
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data but also persistent relational data, because information from customer reviews 
and fashion blogs typically need to be linked to the product catalogues and sales 
information which is generally stored in a relational database. Therefore, we have 
extended MonetDB with the notion of STREAM TABLE and a continuous query 
scheduler, so that we can also benefit from the 25+ years research and engineering 
work on optimising data processing in MonetDB for fashion time series streaming 
data processing. 

MonetDB Implementation Architecture 

The following figure shows the software implementation stack of a MonetDB 

database server.   
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The boxes with gray background are components that have been modified or 
extended to support the storage and management of streaming data, and the 
processing of continuous queries. At the SQL level, all components, including the 
parser, syntax tree, compiler and catalog, have been extended to support the new 
language syntax for streaming tables and continuous queries. The MAL is a 
MonetDB internal language in which the physical query execution plans are 
expressed (as shown here). At the MAL level, all components have been extended 
to support the new language features, as well as a new MAL optimiser, called 
continuous query scheduler, who is in charge of the administration and invocation 
of continuous queries. Finally, at the database execution kernel level (i.e. the GDK 
kernel), the transaction manager has been modified to use a much lighter 
transaction scheme for streaming tables and continuous queries, because streaming 
tables only contain transient data to which the strict database ACID properties do 
not apply. 

Streaming Tables 

Data delivered or generated in streaming applications often require immediate 
processing. In most cases, the raw data need not end-up in the persistent store of a 
database. Instead, it is first refined and aggregated. Moreover, modern message 
brokers often manage the persistency of the raw data in a distributed and reliable 
fashion. In case of failures, they already provide methods to go back in time to start 
reprocessing. Redoing this work as part of a database transaction would be 
unnecessary and a potential performance drain. This leaves us with the notion of 
streaming tables which are common in most streaming databases. They are light 
versions of normal relational tables, often solely kept in memory and not subjected 
to the transaction management. They are the end-points to deliver the streaming 
events. The following SQL syntax specifies how a streaming table can be created 
in MonetDB: 

 
CREATE STREAM TABLE tname (... columns ...) 
  [SET [WINDOW positive_number] [STRIDE positive_number]]; 

The column definitions follow the regular definition of persistent tables. Primary 
Keys and Foreign Key constraints are ignored as a reaction to their violation would 
be ill-defined in case of a streaming table. The WINDOW property determines when a 
continuous query that has been defined on this table should be triggered. When set, 
the WINDOW parameter denotes the minimal number of tuples in the streaming table 
to trigger a continuous query on it. If not provided (default), then any continuous 
query using this stream table will be triggered by an interval timer instead. 
The STRIDE property determines what to do with tuples that have been consumed 
by a continuous query. When set, the STRIDE parameter denotes the number of 
tuples to be deleted from this stream table at the end of a continuous query 
invocation. The default action is to remove all tuples seen in the query invocation, 
otherwise the oldest N tuples are removed. Setting N to zero will keep all tuples 
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until explicitly deletion by a continuous query. The STRIDE size cannot be larger 
than the size of the window to avoid events received but never processed. The 
parameters can be changed later with the following SQL commands: 

 
ALTER STREAM TABLE tname SET WINDOW positive_number; 
ALTER STREAM TABLE tname SET STRIDE positive_number; 

Continuous Queries 

The semantics of continuous queries are encapsulated into ordinary SQL UDF and 
UDP. They only differ in the way they are called, and they only use STREAM TABLEs 
as input/output. Given an existing SQL UDF, it can be registered at the continuous 
query scheduler using the command: 

 
START CONTINUOUS { PROCEDURE | FUNCTION } fname `(' arguments  `)' 
  [WITH [HEARTBEAT positive_number] [CLOCK literal] [CYCLES 
positive_number]] [AS tagname]; 

The scheduler is bases on a Petri-net model, which activates the execution of a 
continuous UDF/UDP when all its input triggers are satisfied. 
The HEARTBEAT parameter indicates the number of milliseconds between calls to the 
continuous query. If not set (default), the streaming tables used in the UDF/UDP 
will be scanned making it a tuple-based continuous query instead. It is not possible 
to set both HEARTBEAT and a WINDOW parameters at the same time, i.e. only one of the 
temporal and spatial conditions may be set. If neither is set, then the continuous 
query will be triggered in each Petri-net cycle. The CYCLES parameter tells the 
number of times the continuous query will be run before being removed by the 
Petri-net. If not indicated (default), the continuous query will run forever. 
The CLOCK parameter specifies the wall-clock time for the continuous query to start, 
otherwise it will start immediately upon registration. The literal can be a 
timestamp (e.g. timestamp `2017-08-29 15:05:40') which sets the continuous 
query to start at that point, a date (e.g. date `2017-08-29') on which the continuous 
query will start at midnight, a time value (e.g. time `15:05:40') meaning that the 
continuous query will start today at that time, or simply a UNIX timestamp integer 
with millisecond precision. The tagname parameter is used to identify a continuous 
query. In this way, an SQL UDF/UDP with different arguments can be registered 
as different continuous queries. If a tagname is not provided, then the 
function/procedure name will be used instead. After having registered a continuous 
query, it is possible to pause, resume or stop it. Their syntax is as follows: 

 
-- Stop and remove a continuous query from the Petri-net. 
STOP CONTINUOUS tagname; 
 
-- Pause a continuous query from the Petri-net but do not remove it. 
PAUSE CONTINUOUS tagname; 
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-- Resume a paused continuous query. If the HEARTBEAT and CYCLES parameters 
are not provided 
--   (default), then the previous registered values will be used. 
RESUME CONTINUOUS tagname [WITH [HEARTBEAT positive_number] [CLOCK literal] 
[CYCLES positive_number]] 

The following SQL commands apply to all: 

 
-- Stop and remove all continuous queries from the Petri-net. 
STOP ALL CONTINUOUS; 
 
-- Pause all continuous queries in the Petri-net. 
PAUSE ALL CONTINUOUS 
 
-- Resume all continuous queries in the Petri-net with the previous 
HEARTBEAT. 
RESUME ALL CONTINUOUS and CYCLES values. 

During the first iteration of a continuous function, a streaming table is created 
under the cquery schema to store the outputs of the function during its lifetime in 
the scheduler. This streaming table will be dropped once the continuous function is 
deregistered from the scheduler or the MonetDB server restarts. Several 
implementation choices should be noted: 

• All continuous queries are stopped once the MonetDB server shuts down. 
The user must start the continuous queries manually at restart of the server. 

• Streaming tables are volatile for better performance under large workloads. 
This means that upon restart of the database server their data is lost. 

• A streaming table cannot be dropped while there is a continuous query using 
it. The same condition holds for registered UDFs. 

• The SQL catalog properties of a streaming table including columns cannot 
be altered unlike regular SQL tables. Users must drop the table and recreate 
it with the desired changes. 

• The current scheduler implementation is agnostic of transaction 
management. This means that if a continuous query was started, paused, 
resumed or stopped during a rollbacked transaction, the changes are not 
reverted. 

• If an error happens during a single execution, the continuous query gets 
paused automatically. The error can be checked with 
a cquery.status() or cquery.log() call. 

	


