
	 1	

FaBIAM Overview

The following figure shows an overview of FaBIAM.

All components are integrated into the kernel of MonetDB. The solid arrows
indicate the components that can already work together, while the dashed arrows
indicating future integration. From bottom to top, they are divided into three
layers:

• Data Ingestion Layer
This layer at the bottom of the MonetDB kernel provides various features
for loading data into MonetDB. In the fashion world, there are three major
groups of data: structured (e.g. product catalogues and sales information),
unstructured (e.g. fashion blogs, customer reviews, social media posts and
news messages) and binary data (e.g. videos and pictures). A prerequisite
for the design of FaBIAM is that it must be able to store and process both
structured and unstructured data, while binary data can be generally left as
is. Therefore, next to CSV (the de facto standard data format for structured
data) MonetDB also support JSON (the de facto standard data format for
unstructured data) as a native data type.

• Processing Layer
This layer in the middle of the MonetDB kernel provides various features to
facilitate query processing. In the context of the FashionBrain project, we

	 2	

have introduced several major extensions in this layer geared towards
streaming and time series (fashion) data processing by means of both
traditional SQL queries, as well as using modern machine learning
technologies. This include i) major extensions to MonetDB's support for
Window Function ii) a CQE for streaming and IoT data, which will be
detailed below; and iii) a tight integration with various machine learning
libraries, including the popular TensorFlow library, through SQL Python
UDFs.

• Analysis Layer
In this layer at the top of the MonetDB kernel, we have integrated
technologies of FashionBrain partners (under the collaborations of the
respective partner) to enrich MonetDB's analytical features for (fashion) text
data and time series data:

o FLAIR is a python library (provided by Zalando) for named entity
recognition.

o IDEL is also a python library (provided by BEUTH), but for linking
of already identified entities between text data and relational records,
and for records linkage of already identified entities in relational
records.

o RecovDB is a MonetDB-based RDBMS for the recovery of blocks of
missing values in time series stored in MonetDB. The CD-based
recovery algorithm (provided by UNIFR) is implemented as SQL
Python UDFs, but UNIFR and MDBS are working together on
porting it to MonetDB native C-UDFs.

In summary, the design of the FaBIAM architecture covers the whole stack of data
loading, processing and analysis specially for fashion text and time series data.
Further in this showcase, we detail one component in each layer in a separate
section, i.e. JSON, continuous query processing and FLAIR integration.

Streaming Data and Continuous Query
Time series data are series of values obtained at successive times with regular or
irregular intervals between them. Many fashion data, such as customer reviews,
fashion blogs, social media messages and click streams, can be regarded as time
series (mostly) with irregular time intervals. Taking customer reviews as an
example, the raw data can be simply modelled as one long series of pairs (Of
course, each pair needs to be annotated with meta information, such as the identify
of the customer and the reviewed product.). By analysing this type of data, which
we refer to as fashion time series, fashion retailers would be able to gain valuable
insights of not only trends, moods and opinions of potential customers at a given
moment in time, but also the changes in trends, moods and opinions of a period of
time. Fashion time series is usually produced as streams of data. Hence, supporting
fashion time series does not only require a system to be able to process streaming

	 3	

data but also persistent relational data, because information from customer reviews
and fashion blogs typically need to be linked to the product catalogues and sales
information which is generally stored in a relational database. Therefore, we have
extended MonetDB with the notion of STREAM TABLE and a continuous query
scheduler, so that we can also benefit from the 25+ years research and engineering
work on optimising data processing in MonetDB for fashion time series streaming
data processing.

MonetDB Implementation Architecture

The following figure shows the software implementation stack of a MonetDB

database server.

	 4	

The boxes with gray background are components that have been modified or
extended to support the storage and management of streaming data, and the
processing of continuous queries. At the SQL level, all components, including the
parser, syntax tree, compiler and catalog, have been extended to support the new
language syntax for streaming tables and continuous queries. The MAL is a
MonetDB internal language in which the physical query execution plans are
expressed (as shown here). At the MAL level, all components have been extended
to support the new language features, as well as a new MAL optimiser, called
continuous query scheduler, who is in charge of the administration and invocation
of continuous queries. Finally, at the database execution kernel level (i.e. the GDK
kernel), the transaction manager has been modified to use a much lighter
transaction scheme for streaming tables and continuous queries, because streaming
tables only contain transient data to which the strict database ACID properties do
not apply.

Streaming Tables

Data delivered or generated in streaming applications often require immediate
processing. In most cases, the raw data need not end-up in the persistent store of a
database. Instead, it is first refined and aggregated. Moreover, modern message
brokers often manage the persistency of the raw data in a distributed and reliable
fashion. In case of failures, they already provide methods to go back in time to start
reprocessing. Redoing this work as part of a database transaction would be
unnecessary and a potential performance drain. This leaves us with the notion of
streaming tables which are common in most streaming databases. They are light
versions of normal relational tables, often solely kept in memory and not subjected
to the transaction management. They are the end-points to deliver the streaming
events. The following SQL syntax specifies how a streaming table can be created
in MonetDB:

CREATE STREAM TABLE tname (... columns ...)
 [SET [WINDOW positive_number] [STRIDE positive_number]];

The column definitions follow the regular definition of persistent tables. Primary
Keys and Foreign Key constraints are ignored as a reaction to their violation would
be ill-defined in case of a streaming table. The WINDOW property determines when a
continuous query that has been defined on this table should be triggered. When set,
the WINDOW parameter denotes the minimal number of tuples in the streaming table
to trigger a continuous query on it. If not provided (default), then any continuous
query using this stream table will be triggered by an interval timer instead.
The STRIDE property determines what to do with tuples that have been consumed
by a continuous query. When set, the STRIDE parameter denotes the number of
tuples to be deleted from this stream table at the end of a continuous query
invocation. The default action is to remove all tuples seen in the query invocation,
otherwise the oldest N tuples are removed. Setting N to zero will keep all tuples

	 5	

until explicitly deletion by a continuous query. The STRIDE size cannot be larger
than the size of the window to avoid events received but never processed. The
parameters can be changed later with the following SQL commands:

ALTER STREAM TABLE tname SET WINDOW positive_number;
ALTER STREAM TABLE tname SET STRIDE positive_number;

Continuous Queries

The semantics of continuous queries are encapsulated into ordinary SQL UDF and
UDP. They only differ in the way they are called, and they only use STREAM TABLEs
as input/output. Given an existing SQL UDF, it can be registered at the continuous
query scheduler using the command:

START CONTINUOUS { PROCEDURE | FUNCTION } fname `(' arguments `)'
 [WITH [HEARTBEAT positive_number] [CLOCK literal] [CYCLES
positive_number]] [AS tagname];

The scheduler is bases on a Petri-net model, which activates the execution of a
continuous UDF/UDP when all its input triggers are satisfied.
The HEARTBEAT parameter indicates the number of milliseconds between calls to the
continuous query. If not set (default), the streaming tables used in the UDF/UDP
will be scanned making it a tuple-based continuous query instead. It is not possible
to set both HEARTBEAT and a WINDOW parameters at the same time, i.e. only one of the
temporal and spatial conditions may be set. If neither is set, then the continuous
query will be triggered in each Petri-net cycle. The CYCLES parameter tells the
number of times the continuous query will be run before being removed by the
Petri-net. If not indicated (default), the continuous query will run forever.
The CLOCK parameter specifies the wall-clock time for the continuous query to start,
otherwise it will start immediately upon registration. The literal can be a
timestamp (e.g. timestamp `2017-08-29 15:05:40') which sets the continuous
query to start at that point, a date (e.g. date `2017-08-29') on which the continuous
query will start at midnight, a time value (e.g. time `15:05:40') meaning that the
continuous query will start today at that time, or simply a UNIX timestamp integer
with millisecond precision. The tagname parameter is used to identify a continuous
query. In this way, an SQL UDF/UDP with different arguments can be registered
as different continuous queries. If a tagname is not provided, then the
function/procedure name will be used instead. After having registered a continuous
query, it is possible to pause, resume or stop it. Their syntax is as follows:

-- Stop and remove a continuous query from the Petri-net.
STOP CONTINUOUS tagname;

-- Pause a continuous query from the Petri-net but do not remove it.
PAUSE CONTINUOUS tagname;

	 6	

-- Resume a paused continuous query. If the HEARTBEAT and CYCLES parameters
are not provided
-- (default), then the previous registered values will be used.
RESUME CONTINUOUS tagname [WITH [HEARTBEAT positive_number] [CLOCK literal]
[CYCLES positive_number]]

The following SQL commands apply to all:

-- Stop and remove all continuous queries from the Petri-net.
STOP ALL CONTINUOUS;

-- Pause all continuous queries in the Petri-net.
PAUSE ALL CONTINUOUS

-- Resume all continuous queries in the Petri-net with the previous
HEARTBEAT.
RESUME ALL CONTINUOUS and CYCLES values.

During the first iteration of a continuous function, a streaming table is created
under the cquery schema to store the outputs of the function during its lifetime in
the scheduler. This streaming table will be dropped once the continuous function is
deregistered from the scheduler or the MonetDB server restarts. Several
implementation choices should be noted:

• All continuous queries are stopped once the MonetDB server shuts down.
The user must start the continuous queries manually at restart of the server.

• Streaming tables are volatile for better performance under large workloads.
This means that upon restart of the database server their data is lost.

• A streaming table cannot be dropped while there is a continuous query using
it. The same condition holds for registered UDFs.

• The SQL catalog properties of a streaming table including columns cannot
be altered unlike regular SQL tables. Users must drop the table and recreate
it with the desired changes.

• The current scheduler implementation is agnostic of transaction
management. This means that if a continuous query was started, paused,
resumed or stopped during a rollbacked transaction, the changes are not
reverted.

• If an error happens during a single execution, the continuous query gets
paused automatically. The error can be checked with
a cquery.status() or cquery.log() call.

	

